精英家教網 > 高中數學 > 題目詳情
若f(x)為定義在區間[-6,6]上的偶函數,且f(3)>f(1),下列各式中一定成立的是(  )

A. f(-1)<f(3)

B. f(0)<f(6)

C. f(3)>f(2)

D. f(2)>f(0)

解析:考查數形結合思想或轉化思想,畫圖觀察,或由f(-1)=f(1)<f(3).

答案:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•昌平區二模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x}=m,在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①函數y=f(x)的定義域為R,最大值是
1
2
;②函數y=f(x)在[0,1]上是增函數;
③函數y=f(x)是周期函數,最小正周期為1;④函數y=f(x)的圖象的對稱中心是(0,0).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•順義區二模)對于定義域為A的函數f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數f(x)是A上的嚴格增函數;函數f(k)是定義在N*上,函數值也在N*中的嚴格增函數,并且滿足條件f(f(k))=3k.
(Ⅰ)判斷函數f(3x)=2×3x(x∈N)是否是N上的嚴格增函數;
(Ⅱ)證明:f(3k)=3f(k);
(Ⅲ)是否存在正整數k,使得f(k)=2012,若存在求出k值;若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•青浦區一模)我們把定義在R上,且滿足f(x+T)=af(x)(其中常數a,T滿足a≠1,a≠0,T≠0)的函數叫做似周期函數.
(1)若某個似周期函數y=f(x)滿足T=1且圖象關于直線x=1對稱.求證:函數f(x)是偶函數;
(2)當T=1,a=2時,某個似周期函數在0≤x<1時的解析式為f(x)=x(1-x),求函數y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)對于確定的T>0且0<x≤T時,f(x)=3x,試研究似周期函數函數y=f(x)在區間(0,+∞)上是否可能是單調函數?若可能,求出a的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2007年普通高等學校招生全國統一考試、數學(安徽卷) 題型:013

定義在R上的函數f(x)既是奇函數,又是周期函數,T是它的一個正周期.若將方程f(x)=0在閉區[-T,T]上的根的個數記為n,則n可能為

[  ]

A.0

B.1

C.3

D.5

查看答案和解析>>

科目:高中數學 來源:2007年普通高等學校招生全國統一考試安徽卷數學文科 題型:013

定義在R上的函數f(x)既是奇函數,又是周期函數,T是它的一個正周期.若將方程f(x)=0在閉區[-TT]上的根的個數記為n,則n可能為

[  ]

A.0

B.1

C.3

D.5

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视