【題目】現有一個關于平面圖形的命題:如圖,同一平面內有兩個邊長都是2的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為______.
【答案】1
【解析】
連OA,OB,設OR交BC于M,OP交AB于N,由四邊形ABCD為正方形,得到OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四邊形ORQP為正方形,得∠NOM=90°,所以∠MOB=∠NOA,則△OBM≌△OAN,即可得到S四邊形MONB=S△AOB.
解:連OA,OB,設OR交BC于M,OP交AB于N,
如圖示:
∵四邊形ABCD為正方形,
∴OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,
而四邊形ORQP為正方形,
∴∠NOM=90°,
∴∠MOB=∠NOA,
∴△OBM≌△OAN,
∴S四邊形MONB=S△AOB2×2=1,
即它們重疊部分的面積為1,
故答案為:1
科目:高中數學 來源: 題型:
【題目】如果一個數列從第2項起,每一項與它前一項的差都大于2,則稱這個數列為“阿當數列”.
(1)若數列為“阿當數列”,且
,
,
,求實數
的取值范圍;
(2)是否存在首項為1的等差數列為“阿當數列”,且其前
項和
滿足
?若存在,請求出
的通項公式;若不存在,請說明理由.
(3)已知等比數列的每一項均為正整數,且
為“阿當數列”,
,
,當數列
不是“阿當數列”時,試判斷數列
是否為“阿當數列”,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有窮數列中的每一項都是-1,0,1這三個數中的某一個數,
,且
,則有窮數列
中值為0的項數是( )
A. 1000B. 1010C. 1015D. 1030
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過點
并且與圓
相外切,動圓圓心
的軌跡為
.
(Ⅰ)求曲線的軌跡方程;
(Ⅱ)過點的直線
與軌跡
交于
、
兩點,設直線
,設點
,直線
交
于
,求證:直線
經過定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,曲線的極坐標方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標系取相同的單位長度)的直角坐標系
中,曲線
的參數方程為:
(
為參數).
(1)求曲線的直角坐標方程與曲線
的普通方程;
(2)將曲線經過伸縮變換
后得到曲線
,若
,
分別是曲線
和曲線
上的動點,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com