精英家教網 > 高中數學 > 題目詳情

【題目】現有一個關于平面圖形的命題:如圖,同一平面內有兩個邊長都是2的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為______

【答案】1

【解析】

OAOB,設ORBCM,OPABN,由四邊形ABCD為正方形,得到OBOA,∠BOA90°,∠MBO=∠OAN45°,而四邊形ORQP為正方形,得∠NOM90°,所以∠MOB=∠NOA,則△OBM≌△OAN,即可得到S四邊形MONBSAOB.

解:連OA,OB,設ORBCM,OPABN,

如圖示:

∵四邊形ABCD為正方形,

OBOA,∠BOA90°,∠MBO=∠OAN45°,

而四邊形ORQP為正方形,

∴∠NOM90°,

∴∠MOB=∠NOA,

∴△OBM≌△OAN

S四邊形MONBSAOB2×21,

即它們重疊部分的面積為1,

故答案為:1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如果一個數列從第2項起,每一項與它前一項的差都大于2,則稱這個數列為阿當數列”.

1)若數列阿當數列,且,,,求實數的取值范圍;

2)是否存在首項為1的等差數列阿當數列,且其前項和滿足?若存在,請求出的通項公式;若不存在,請說明理由.

3)已知等比數列的每一項均為正整數,且阿當數列,,當數列不是阿當數列時,試判斷數列是否為阿當數列,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有窮數列中的每一項都是-1,0,1這三個數中的某一個數,,且,則有窮數列中值為0的項數是(

A. 1000B. 1010C. 1015D. 1030

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓過點并且與圓相外切,動圓圓心的軌跡為.

Ⅰ)求曲線的軌跡方程;

Ⅱ)過點的直線與軌跡交于、兩點,設直線,設點,直線,求證:直線經過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,拋物線與直線 交于,兩點.

(1)當時,分別求拋物線在點處的切線方程;

(2)軸上是否存在點,使得當變動時,總有?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數方程為: 為參數).

(1)求曲線的直角坐標方程與曲線的普通方程;

(2)將曲線經過伸縮變換后得到曲線,若, 分別是曲線和曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,且離心率為.

(1)求橢圓的方程;

(2)過的直線交橢圓,兩點,判斷點與以線段為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求的極值;

2)當時,討論的單調性;

3)若對任意的,,恒有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】曲線y=1+與直線y=k(x-2)+4有兩個交點,則實數k的取值范圍是( )

A. (,+∞)B. (,]C. (0,)D. (,]

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视