【題目】已知拋物線,圓
.
(1)若拋物線的焦點
在圓上,且
為
和圓
的一個交點,求
;
(2)若直線與拋物線
和圓
分別相切于點
,求
的最小值及相應
的值.
【答案】(1);(2)
的最小值為
,此時
.
【解析】
試題分析:(1)首先求得焦點的坐標,由此求得拋物線的方程,然后聯立拋物線與圓的方程求得
,最后利用拋物線的定義求得
的長;(2)設
,由此設出直線切線
的方程,然后根據
求得
與
的關系式,從而求得
關于
的關系式,進而利用基本不等式求得其最小值,以及
的值.
試題解析:(1)由題意得F(1,0),從而有C:x2=4y.
解方程組,得yA=-2,所以|AF|=-1. …5分
(2)設M(x0,y0),則切線l:y=(x-x0)+y0,
整理得x0x-py-py0=0. …6分
由|ON|=1得|py0|==,
所以p=且y-1>0, …8分
所以|MN|2=|OM|2-1=x+y-1=2py0+y-1
=+y-1=4++(y-1)≥8,當且僅當y0=時等號成立,
所以|MN|的最小值為2,此時p=. …12分
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓
經過伸縮變換
后得到曲線
,相互垂直的直線
過定點
與曲線
相交于
兩點,
與曲線
相交于
兩點.
(1)求曲線的直角坐標方程;
(2)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,在底面ABCD中,AD//BC,AD⊥CD,Q是AD的中點,M是棱PC的中點,PA=PD=2,BC=AD=1,CD=
,PB=
.
(Ⅰ)求證:平面PAD⊥底面ABCD;
(Ⅱ)試求三棱錐B-PQM的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區為了解居民參加體育鍛煉的情況,從該社區隨機抽取了18名男性居民和12名女性居民,對他們參加體育鍛煉的情況進行問卷調查.現按是否參加體育鍛煉將居民分成兩類:甲類(不參加體育鍛煉)、乙類(參加體育鍛煉),結果如下表:
甲類 | 乙類 | |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根據上表中的統計數據,完成下面的列聯表;
男性居民 | 女性居民 | 總計 | |
不參加體育鍛煉 | |||
參加體育鍛煉 | |||
總計 |
(Ⅱ)通過計算判斷是否有90%的把握認為參加體育鍛煉與否與性別有關?
附:,其中
.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018湖南(長郡中學、株洲市第二中學)、江西(九江一中)等十四校高三第一次聯考】已知函數(其中
且
為常數,
為自然對數的底數,
).
(Ⅰ)若函數的極值點只有一個,求實數
的取值范圍;
(Ⅱ)當時,若
(其中
)恒成立,求
的最小值
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數有如下性質:如果常數
,那么該函數在
上是減函數,在
上是增函數.
(1)已知函數,利用上述性質,求函數
的單調區間和值域;
(2)已知函數=
和函數
,若對任意
,總存在
,使得
(x2)=
成立,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為
;兩人租車時間都不會超過四小時.
(1)求出甲、乙兩人所付租車費用相同的概率;
(2)求甲、乙兩人所付的租車費用之和為4元時的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某糕點房推出一類新品蛋糕,該蛋糕的成本價為4元,售價為8元.受保質期的影響,當天沒有銷售完的部分只能銷毀.經過長期的調研,統計了一下該新品的日需求量.現將近期一個月(30天)的需求量展示如下:
日需求量x(個) | 20 | 30 | 40 | 50 |
天數 | 5 | 10 | 10 | 5 |
(1)從這30天中任取兩天,求兩天的日需求量均為40個的概率.
(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量
的期望.
(3)根據(2)中的分布列求得當該糕點房一天制作35個該類蛋糕時,對應的利潤的期望值為;現有員工建議擴大生產一天45個,求利用利潤的期望值判斷此建議該不該被采納.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點是圓心為
半徑為
的半圓弧上從點
數起的第一個三等分點,點
是圓心為
半徑為
的半圓弧的中點,
、
分別是兩個半圓的直徑,
,直線
與兩個半圓所在的平面均垂直,直線
、
共面.
(1)求三棱錐的體積;
(2)求直線與
所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com