【題目】我市物價監督部門為調研某公司新開發上市的一種產品銷售價格的合理性,對該公司的產品的銷售與價格進行了統計分析,得到如下數據和散點圖:
定價 | 10 | 20 | 30 | 40 | 50 | 60 |
年銷售 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
圖(1)為散點圖,圖(2)為
散點圖.
(Ⅰ)根據散點圖判斷與
,
與
哪一對具有較強的線性相關性(不必證明);
(Ⅱ)根據(Ⅰ)的判斷結果和參考數據,建立關于
的回歸方程(線性回歸方程中的斜率和截距均保留兩位有效數字);
(Ⅲ)定價為多少時,年銷售額的預報值最大?(注:年銷售額定價
年銷售)
參考數據:,
,
,
,
,
,
,
,
參考公式:,
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的單調區間;
(2)當x≥1時,g(x)的最小值大于 ﹣lna,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣4:極坐標與參數方程
極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為 ,曲線C2的極坐標方程為ρsinθ=a(a>0),射線
,
與曲線C1分別交異于極點O的四點A,B,C,D.
(Ⅰ)若曲線C1關于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】O為坐標原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某工廠生產線上隨機抽取16件零件,測量其內徑數據從小到大依次排列如下(單位:):1.12,1.15,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42,據此可估計該生產線上大約有25%的零件內徑小于等于_____
,大約有30%的零件內徑大于_____
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)設點是軌跡
上位于第一象限且在直線
右側的動點,若以
為圓心,線段
為半徑的圓
與
有兩個公共點.試求圓
在右焦點
處的切線
與
軸交點縱坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (其中ω>0),若f(x)的一條對稱軸離最近的對稱中心的距離為
.
(1)求y=f(x)的單調遞增區間;
(2)在△ABC中角A、B、C的對邊分別是a,b,c滿足(2b﹣a)cosC=ccosA,則f(B)恰是f(x)的最大值,試判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com