精英家教網 > 高中數學 > 題目詳情

【題目】我市物價監督部門為調研某公司新開發上市的一種產品銷售價格的合理性,對該公司的產品的銷售與價格進行了統計分析,得到如下數據和散點圖:

定價(元/

10

20

30

40

50

60

年銷售

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

圖(1)為散點圖,圖(2)為散點圖.

(Ⅰ)根據散點圖判斷,哪一對具有較強的線性相關性(不必證明);

(Ⅱ)根據(Ⅰ)的判斷結果和參考數據,建立關于的回歸方程(線性回歸方程中的斜率和截距均保留兩位有效數字);

(Ⅲ)定價為多少時,年銷售額的預報值最大?(注:年銷售額定價年銷售)

參考數據:,,,,

參考公式:,.

【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析;(Ⅲ)定價為20元/時,年銷售額的預報值最大.

【解析】分析:(Ⅰ)由于圖(2)的點更集中在一條直線附近,所以具有的線性相關性較強.(Ⅱ)利用最小二乘法求關于的回歸方程為. (Ⅲ)先得到,,再利用導數求定價為多少時年銷售額的預報值最大.

詳解:(Ⅰ)由散點圖知,具有的線性相關性較強.

(Ⅱ)由條件,得,

,所以,

,得,

關于的回歸方程為.

(Ⅲ)設年銷售額為元,令,,

,

,得;令,得

單調遞增,在單調遞減,在取得最大值,

因此,定價為20元/時,年銷售額的預報值最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的單調區間;
(2)當x≥1時,g(x)的最小值大于 ﹣lna,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列{an}前n項和為Sn , a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4﹣4:極坐標與參數方程
極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為 ,曲線C2的極坐標方程為ρsinθ=a(a>0),射線 , 與曲線C1分別交異于極點O的四點A,B,C,D.
(Ⅰ)若曲線C1關于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】O為坐標原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某工廠生產線上隨機抽取16件零件,測量其內徑數據從小到大依次排列如下(單位:):1.12,1.15,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42,據此可估計該生產線上大約有25%的零件內徑小于等于_____,大約有30%的零件內徑大于_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)設點是軌跡上位于第一象限且在直線右側的動點,若以為圓心,線段為半徑的圓有兩個公共點.試求圓在右焦點處的切線軸交點縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (其中ω>0),若f(x)的一條對稱軸離最近的對稱中心的距離為
(1)求y=f(x)的單調遞增區間;
(2)在△ABC中角A、B、C的對邊分別是a,b,c滿足(2b﹣a)cosC=ccosA,則f(B)恰是f(x)的最大值,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)設,證明:對任意,.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视