精英家教網 > 高中數學 > 題目詳情
函數f(x)=sin2x--.
(1)若x∈[,],求函數f(x)的最值及對應的x的值.
(2)若不等式[f(x)-m]2<1在x∈[,]上恒成立,求實數m的取值范圍.
(1) 當2x-=,即x=時,f(x)max=0,
當2x-=,即x=時,f(x)min=-.
(2) (-1,)
【思路點撥】(1)先利用所學公式把f(x)變換成f(x)=Asin(ωx+φ)+b的形式.利用所給x的范圍,求得最值及對應x的值.(2)利用不等式變換轉化成不等式恒成立問題求解.
解:(1)f(x)=sin 2x--
=sin 2x-cos 2x-1=sin(2x-)-1,
∵x∈[,],∴≤2x-,
當2x-=,即x=時,f(x)max=0,
當2x-=,即x=時,f(x)min=-.
(2)方法一:∵[f(x)-m]2<1(x∈[,])?
f(x)-1<m<f(x)+1(x∈[,]),
∴m>f(x)max-1且m<f(x)min+1,
故m的取值范圍為(-1,).
方法二:∵[f(x)-m]2<1?m-1<f(x)<m+1,
∴m-1<-且m+1>0,故-1<m<,
故m的取值范圍是(-1,).
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=sin(2x+).
(1)求函數y=f(x)的單調遞減區間.
(2)畫出函數y=f(x)在區間[0,π]上的圖象.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=-2sin2x+2sinxcosx+1.
(1)求f(x)的最小正周期及對稱中心;
(2)若x∈,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數yAsin(ωxφ)+k(A>0,ω>0)的最大值為4,最小值為0,最小正周期為,直線x是其圖象的一條對稱軸,則下面各式中符合條件的解析式為 (  )
A.y=4sinB.y=2sin+2
C.y=2sin+2D.y=2sin+2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

將函數f(x)=sin(2xθ) 的圖象向右平移φ(φ>0)個單位長度后得到函數g(x)的圖象,若f(x),g(x)的圖象都經過點P,則φ的值可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數y=(acosx+bsinx)cosx有最大值2,最小值-1,則實數(ab)2的值為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

關于函數f(x)=4sin(2x+)(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是π的整數倍;
②y=f(x)的表達式可改寫為y="4" cos(2x-);
③y=f(x)的圖象關于點(-,0)對稱;
④y=f(x)的圖象關于直線x=-對稱.
其中正確命題的序號是   .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數y=的值域是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

將函數ycos x+sin x(x∈R) 的圖象向左平移m(m>0)個單位長度后,所得到的圖象關于y軸對稱,則m的最小值是________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视