精英家教網 > 高中數學 > 題目詳情
對于函數f(x),若f(x)=x,則稱x為f(x)的“不動點”;若f[f(x)]=x,則稱x為f(x)的“周期點”,函數f(x)的“不動點”和“周期點”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求證:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實數a的取值范圍.
分析:(I)分A=∅和A≠∅的情況,然后根據所給“不動點”和“穩定點”的定義來證明.
(II)理解A=B時,它表示方程ax2-1=x與方程a(ax2-1)2-1=x有相同的實根,根據這個分析得出求出a的值.
解答:證明:(1)?x∈A,即f(x)=x.
則有f[f(x)]=f(x)=x,x∈B
∴A⊆B
(2)∵f(x)=ax2-1
∴f[f(x)]=a(ax2-1)2-1
若f[f(x)]=x,則a(ax2-1)2-1-x=0a(ax2-1)2-1-x=a(ax2-1)2-ax2+ax2-x-1=a[(ax2-1)2-x2]+ax2-x-1=a(ax2-x-1)(ax2+x-1)+ax2-x-1=(ax2-x-1)(a2x2+ax-a+1)
∴B={x|(ax2-x-1)(a2x2+ax-a+1)=0}A={x|ax2-x-1=0}
當a=0時,A={-1},B={-1},A=B≠∅
∴a=0符合題意
當a≠0時,當A=B≠∅時,方程ax2-x-1=0有實根;對方程a2x2+ax-a+1=0根的情況進行分類討論:
①若方程a2x2+ax-a+1=0有兩個不相等的實根,則
1+4a>0
a2-4a2(1-a)>0
a≠0

此時a>
3
4
.此時兩個方程沒有公共解,集合B中有四個元素.不合題意,舍去.
②若方程a2x2+ax-a+1=0有兩個相等的實根,則
1+4a≥0
a2-4a2(1-a)=0
a≠0

解得a=
3
4
.此時方程ax2-x-1=0的兩根分別為-
2
3
 ,  2
;a2x2+ax-a+1=0的實根為x1=x2=-
2
3
.驗證得:A=B={-
2
3
 ,  2}

③若方程a2x2+ax-a+1=0無實根,此時A=B.則
1+4a≥0
a2-4a2(1-a)<0
a≠0

解得:-
1
4
≤a<
3
4
且a≠0.
從而所求a的取值范圍為{a|-
1
4
≤a≤
3
4
}
點評:本題考查對新概念的理解和運用的能力,同時考查了集合間的關系和方程根的相關知識,解題過程中體現了分類討論的數學思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x),若存在區間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區間M為函數f(x)的一個“穩定區間”.給出下列4個函數:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩定區間”的函數有
 
(填出所有滿足條件的函數序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若在其定義域內存在兩個實數a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數f(x)為“科比函數”.若函數f(x)=k+
x+2
是“科比函數”,則實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數
f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
(1)若x1<1<x2,且f(x)的圖象關于直線x=m對稱,求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩定點”.函數f(x)的“不動點”和“穩定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設函數f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設函數f(x)=3x+4,求集合A和B,并分析能否根據(1)(2)中的結論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數f(x)的不動點.若函數f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數f(x)的單調區間,
(2)已知各項不為0的數列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設bn=-
1
an
,Tn表示數列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视