【題目】如圖,四棱錐中,底面
為矩形,側面
底面
,
,
,
,
與平面
所成的角為
.
(1)證明:;
(2)求二面角的正切值.
科目:高中數學 來源: 題型:
【題目】今年4月23日我市正式宣布實施“3+1+2”的高考新方案,“3”是指必考的語文、數學、外語三門學科,“1”是指在物理和歷史中必選一科,“2”是指在化學、生物、政治、地理四科中任選兩科.為了解我校高一學生在物理和歷史中的選科意愿情況,進行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個樣本,統計知其中有17個男生選物理,6個女生選歷史.
(I)根據所抽取的樣本數據,填寫答題卷中的列聯表. 并根據統計量判斷能否有
的把握認為選擇物理還是歷史與性別有關?
(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有
人,求隨機變量
的分布列和數學期望.(
的計算公式見下)
,臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:
記為事件:“乙離子殘留在體內的百分比不低于
”,根據直方圖得到
的估計值為
.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區間的中點值為代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
,直線
交橢圓
于不同的兩點
,設線段
的中點為
.
(1)求橢圓的方程;
(2)當的面積為
(其中
為坐標原點)且
時,試問:在坐標平面上是否存在兩個定點
,使得當直線
運動時,
為定值?若存在,求出點
的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產,
兩種產品,根據市場調查與預測,
產品的利潤與投資成正比,其關系如圖1,
產品的利潤與投資的算術平方根成正比,其關系如圖2,(注:利潤與投資單位:萬元)
(1)分別將,
兩種產品的利潤表示為投資的函數關系,并寫出它們的函數關系式;
(2)該企業已籌集到10萬元資金,全部投入到,
兩種產品的生產,怎樣分配資金,才能使企業獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(
為實數).
(1)當時,求函數
的圖象在
處的切線方程;
(2)求在區間
上的最小值;
(3)若存在兩個不等實數,使方程
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·江西六校聯考)在△ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-
.
(1)求角B的大。
(2)若f(x)=cos2x+sin2(x+B),求函數f(x)的單調遞增區間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com