精英家教網 > 高中數學 > 題目詳情
已知平面向量
a
=(m,1),
b
=(m2,
1
9
)
,且
c
=(1,n)
d
=(
1
4
,n2)
,滿足
a
c
b
d
=1
的解(m,n)僅有一組,則實數λ的值為( 。
A.2B.3C.
13
D.±
13
∵平面向量
a
=(m,1),
b
=(m2,
1
9
)
,且
c
=(1,n)
,
d
=(
1
4
n2)
,
∴根據題意有  
a
c
= m+n= λ
b
d
=
m2
4
 + 
n2
9
= 1

m2
4
+
(λ-m)2
9
=1,即 13m2-8λm+4λ2-36=0.
a
c
b
d
=1
的解(m,n)僅有一組可得,△=64λ2-4×13(4λ2-36)=0,解得 λ=±
13
,
故選D.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知平面向量
a
b
滿足|
a
|=3,|
b
|=2,
a
b
的夾角為60°,若(
a
-m
b
)⊥
a
,則實數m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知平面向量
a
=(1,2),
b
=(-2,m)
,且
a
b
,則2
a
+3
b
=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知平面向量
a
=(m,1),
b
=(m2,
1
9
)
,且
c
=(1,n)
d
=(
1
4
,n2)
,滿足
a
c
b
d
=1
的解(m,n)僅有一組,則實數λ的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知平面向量
a
=(m,1),
b
=(m,1)
,
c
=(n,0)
,
d
=(1,n)
,滿足
a
c
b
d
=1
的解(m,n)僅有一組,則實數λ的值為(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视