【題目】已知函數f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當a>1時,求使f(x)>0的x的取值范圍.
【答案】
(1)解:f(x)=loga(x+1)﹣loga(1﹣x),則 解得﹣1<x<1.
故所求定義域為{x|﹣1<x<1}
(2)解:f(x)為奇函數
由(1)知f(x)的定義域為{x|﹣1<x<1},
且f(﹣x)=loga(﹣x+1)﹣loga(1+x)=﹣[loga(x+1)﹣loga(1﹣x)]=﹣f(x),
故f(x)為奇函數
(3)解:因為當a>1時,f(x)在定義域{x|﹣1<x<1}內是增函數,
所以 .
解得0<x<1.
所以使f(x)>0的x的取值范圍是{x|0<x<1}
【解析】(1)根據對數的性質可知真數大于零,進而確定x的范圍,求得函數的定義域.(2)利用函數解析式可求得f(﹣x)=﹣f(x),進而判斷出函數為奇函數.(3)根據當a>1時,f(x)在定義域{x|﹣1<x<1}內是增函數,可推斷出f(x)>0,進而可知 進而求得x的范圍.
【考點精析】根據題目的已知條件,利用函數的奇偶性和對數的運算性質的相關知識可以得到問題的答案,需要掌握偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱;①加法:②減法:
③數乘:
④
⑤
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2x+alnx(a∈R).
(1)討論函數f(x)的單調性;
(2)若函數f(x)有兩個極值點x1 , x2(x1<x2),且不等式f(x1)≥mx2恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一個圓錐的底面半徑為1,高為3,在圓錐中有一個半徑為x的內接圓柱.
(1)試用x表示圓柱的高;
(2)當x為何值時,圓柱的側面積最大,最大側面積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據調查,某地區有300萬從事傳統農業的農民,人均年收入6000元,為了增加農民的收入,當地政府積極引進資本,建立各種加工企業,對當地的農產品進行深加工,同時吸收當地部分農民進入加工企業工作,據估計,如果有萬人進企業工作,那么剩下從事傳統農業的農民的人均年收入有望提高
,而進入企業工作的農民的人均年收入為
元.
(1)在建立加工企業后,多少農民進入企業工作,能夠使剩下從事傳統農業農民的總收入最大,并求出最大值;
(2)為了保證傳統農業的順利進行,限制農民加入加工企業的人數不能超過總人數的,當地政府如何引導農民,即
取何值時,能使300萬農民的年總收入最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校有,
,
,
四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎.在結果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預測如下:
甲說:“、
同時獲獎”;
乙說:“、
不可能同時獲獎”;
丙說:“獲獎”;
丁說:“、
至少一件獲獎”.
如果以上四位同學中有且只有二位同學的預測是正確的,則獲獎的作品是( )
A. 作品與作品
B. 作品
與作品
C. 作品
與作品
D. 作品
與作品
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com