設函數f(x)=ax•lnx(a>0).
(Ⅰ)當a=2時,判斷函數g(x)=f(x)-4(x-1)的零點的個數,并且說明理由;
(Ⅱ)若對所有x≥1,都有f(x)≤x2-1,求正數a的取值范圍.
分析:(1)將a=2代入寫出函數g(x)的解析式后求導數,然后判斷出函數g(x)的單調性后再由函數g(x)的最小值小于0可求出函數的零點的個數.
(2)先令F(x)=f(x)-(x2-1),在對函數F(x)求導,通過判斷函數的單調性來解題.
解答:解:(Ⅰ)當a=2時,g(x)=f(x)-4(x-1)=2xlnx-4x+4的定義域是(0,+∞)求導,得
g′(x)=2(lnx-1)所以,g(x)在(0,e)上為減函數,在(e,+∞)上為增函數,g(x)
min=g(e)=2(2-e)<0.
又g(1)=0,根據g(x)在(0,e)上為減函數,
則g(x)在(0,e)上恰有一個零點;
又g(e
2)=4>0,則g(e)g(e
2)<0,
所以g(x)在(e,e
2)上恰有一個零點,
再根據g(x)在(e,+∞)上為增函數,g(x)在(e,+∞)上恰有一個零點.
綜上所述,函數g(x)=f(x)-4(x-1)的零點的個數為2.
(Ⅱ)令F(x)=f(x)-(x
2-1)=axlnx-x
2+1(a>0,x≥1),
求導,再令G(x)=F'(x)=a(lnx+1)-2x,
則
G′(x)=-2(ⅰ)若0<a≤2,當x≥1時,
G′(x)=-2≤0,
故G(x)在[1,+∞)上為減函數,
所以當x≥1時,G(x)≤G(1)=a-2≤0,即F'(x)≤0,
則F(x)在[1,+∞)上為減函數,
所以當x≥1時,F(x)≤F(1)=0,即f(x)≤x
2-1成立;
(ⅱ)若a>2,方程G'(x)=0的解為
x=>1,
則當
1≤x≤時,
G′(x)=-2≥0,
故G(x)在
[1,]上為增函數,
所以當
1≤x≤時,G(x)≥G(1)=a-2>0,即F'(x)>0,
則F(x)在
[1,]上為增函數,
所以當
1<x<時,F(x)>F(1)=0,即f(x)>x
2-1成立,此時不合題意.
綜上,滿足條件的正數a的取值范圍是(0,2].
點評:本題主要考查函數的單調性與其導函數的正負之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.