【題目】【選修4-4:坐標系與參數方程】
極坐標系的極點為直角坐標系的原點,極軸為
軸的正半軸,兩神坐標系中的長度單位相同.已知曲線
的極坐標方程為
,
.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)在曲線上求一點,使它到直線
:
(
為參數)的距離最短,寫出
點的直角坐標.
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
,值域為
,即
,若
,則稱
在
上封閉.
(1)分別判斷函數,
在
上是否封閉,說明理由;
(2)函數的定義域為
,且存在反函數
,若函數
在
上封閉,且函數
在
上也封閉,求實數
的取值范圍;
(3)已知函數的定義域為
,對任意
,若
,有
恒成立,則稱
在
上是單射,已知函數
在
上封閉且單射,并且滿足
,其中
(
),
,證明:存在
的真子集,
,使得
在所有
(
)上封閉.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三角形ABC的外接圓的O半徑為,CD垂直于外接圓所在的平面,
(1)求證:平面
平面
.
(2)試問線段上是否存在點
,使得直線
與平面
所成角的正弦值為
?若存在,確定點
的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今有一組數據如下表:
1 | 2 | 3 | 4 | 5 | 6 | |
4 | 5 | 6 | 7 | 8 | 9 | |
90 | 84 | 83 | m | 75 | 68 |
由最小二乘法求得點
的回歸直線方程是
,其中
.
(Ⅰ)求m的值,并求回歸直線方程;
(Ⅱ)設,我們稱
為點
的殘差,記為
.
從所給的點
中任取兩個,求其中有且只有一個點的殘差絕對值不大于1的概率.
參考公式: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com