精英家教網 > 高中數學 > 題目詳情
已知數列{an}的前n項和Sn=n2+n,那么它的通項公式為an=
2n
2n
分析:由題意知得
a1=S1,n=1
an=Sn -Sn-1,n≥2
,由此可知數列{an}的通項公式an
解答:解:a1=S1=1+1=2,
an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]
=2n.
當n=1時,2n=2=a1
∴an=2n.
故答案為:2n.
點評:本題主要考查了利用數列的遞推公式an=Sn-Sn-1求解數列的通項公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视