【題目】定義[x]表示不超過x的最大整數,,例如:
.執行如圖所示的程序框圖若輸入的
,則輸出結果為( )
A.-4.6B.-2.8C.-1.4D.-2.6
科目:高中數學 來源: 題型:
【題目】某次數學測驗共有10道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標準規定:每選對1道題得5分,不選或選錯得0分,某考試每道都選并能確定其中有6道題能選對,其余4道題無法確定正確選項,但這4道題中有2道能排除兩個錯誤選項,另2題只能排除一個錯誤選項,于是該生做這4道題時每道題都從不能排除的選項中隨機挑選一個選項做答,且各題做答互不影響.
(Ⅰ)求該考生本次測驗選擇題得50分的概率;
(Ⅱ)求該考生本次測驗選擇題所得分數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據閱兵領導小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊和聯合軍樂團,總規模約1.5萬人,是近幾次閱兵中規模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規標準.要求最為嚴格的三軍儀仗隊,其隊員的身高一般都在184cm至190cm之間.經過隨機調查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據直方圖得到P(C)的估計值為0.5.
(1)求直方圖中a,b的值;
(2)估計這個陣營女子身高的平均值 (同一組中的數據用該組區間的中點值為代表)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且與雙曲線
有相同的焦點.
(1)求橢圓的方程;
(2)直線與橢圓
相交于
,
兩點,點
滿足
,點
,若直線
斜率為
,求
面積的最大值及此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態文明發展理念已經深入人心,這將推動新能源汽車產業的迅速發展.下表是近幾年我國某地區新能源乘用車的年銷售量與年份的統計表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺) | 8 | 10 | 13 | 25 | 24 |
某機構調查了該地區30位購車車主的性別與購車種類情況,得到的部分數據如下表所示:
購置傳統燃油車 | 購置新能源車 | 總計 | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計 | 30 |
(1)求新能源乘用車的銷量關于年份
的線性相關系數
,并判斷
與
是否線性相關;
(2)請將上述列聯表補充完整,并判斷是否有
的把握認為購車車主是否購置新能源乘用車與性別有關;
(3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區購置新能源乘用車的車主性別比例,從該地區購置新能源乘用車的車主中隨機選取50人,記選到女性車主的人數為X,求X的數學期望與方差.
參考公式:,
,其中
.
,若
,則可判斷
與
線性相關.
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數為常數) .
(1)當時,求曲線
在
處的切線方程:
(2)若函數在
內存在唯一極值點
,求實數
的取值范圍,并判斷
,是
在
內的極大值點還是極小值點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為,(t為參數),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C1:ρ=2cosθ,
.
(1)求C1與C2交點的直角坐標;
(2)若直線l與曲線C1,C2分別相交于異于原點的點M,N,求|MN|的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com