設數列是等差數列,數列
是各項都為正數的等比數列,且
,
,
.
(1)求數列,數列
的通項公式;
(2)求數列的前n項和
.
科目:高中數學 來源: 題型:解答題
設等差數列的前
項和為
且
.
(1)求數列的通項公式及前
項和公式;
(2)設數列的通項公式為
,問: 是否存在正整數t,使得
成等差數列?若存在,求出t和m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(滿分16分)
設數列的前
項和為
.若對任意的正整數
,總存在正整數
,使得
,則稱
是“
數列”.
(1)若數列的前
項和為
,證明:
是“
數列”.
(2)設是等差數列,其首項
,公差
,若
是“
數列”,求
的值;
(3)證明:對任意的等差數列,總存在兩個“
數列”
和
,使得
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分18分)本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數列滿足
.
若,求
的取值范圍;
若是公比為
等比數列,
,
求
的取值范圍;
若成等差數列,且
,求正整數
的最大值,以及
取最大值時相應數列
的公差.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}是公差不為0的等差數列,a1=2,且a2,a3,a4+1成等比數列.
(1)求數列{an}的通項公式;
(2)設bn=an+2an,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知{an}是正數組成的數列,a1=1,且點(,an+1)( n ∈N*)在函數y=x2+1的圖象上.
(1)求數列{an}的通項公式;
(2)若數列 滿足b1=1,
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}滿足an+1=(n∈N*),且a1=
.
(1)求證:數列是等差數列,并求an.
(2)令bn=(n∈N*),求數列{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com