精英家教網 > 高中數學 > 題目詳情

【題目】定義:若數列中存在,其中,,,,均為正整數,且),則稱數列數列”.

1)若數列的前項和,求證:數列;

2)若是首項為1,公比為的等比數列,判斷是否是數列,說明理由;

3)若是公差為)的等差數列且),,求證:數列數列”.

【答案】1)證明見解析;(2)是數列;(3)證明見解析.

【解析】

1)取特殊值,即可判斷;

2)利用反證法,設假設數列,則存在,由絕對值不等式的性質可得,即假設不成立,得證;

3)由等差數列前項和公式及通項公式,分情況取特殊值即可.

解:(1)由數列的前項和,所以,所以數列;

2不是數列,理由如下:假設數列,則存在,其中且均為正整數,且), 因為,則,

所以,

所以,與假設矛盾,即假設不成立;

3)任取中的項,其各項的和構成的集合為,

下面證明,

因為,所以,即,

,則取,得,

,則項和為

,有,即,

綜上:數列數列”.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修;坐標系與參數方程

在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知某圓的極坐標方程為:

)將極坐標方程化為普通方程;

)若點P(x,y)在該圓上,求xy的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】魯班鎖是中國傳統的智力玩具,起源于古代漢族建筑中首創的榫卯結構,這種三維的拼插器具內部的凹凸部分(即榫卯結構)嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱,從外表上看,六根等長的正四棱柱分成三組,經榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長為,現將該魯班鎖放進一個球形容器內,則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計)

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定橢圓,稱圓心在坐標原點,半徑為的圓是橢圓的“伴橢圓”,若橢圓右焦點坐標為,且過點.

1)求橢圓的“伴橢圓”方程;

2)在橢圓的“伴橢圓”上取一點,過該點作橢圓的兩條切線、,證明:兩線垂直;

3)在雙曲線上找一點作橢圓的兩條切線,分別交于切點、使得,求滿足條件的所有點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十九世紀末:法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設為圓上一個定點,在圓周上隨機取一點,連接,所得弦長大于圓的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面四邊形中,已知的面積是的面積的3倍,若存在正實數使得成立,則的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某旅游勝地欲開發一座景觀山,從山的側面進行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點、開口向下,所在的拋物線以為頂點、開口向上,以過山腳(點)的水平線為軸,過山頂(點)的鉛垂線為軸建立平面直角坐標系如圖(單位:百米).已知所在拋物線的解析式所在拋物線的解析式為

(1)求值,并寫出山坡線的函數解析式;

(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點處,(米),假設索道可近似地看成一段以為頂點、開口向上的拋物線當索道在上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區農村居民家庭人均純收入的變化情況,并預測該地區2015年農村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视