精英家教網 > 高中數學 > 題目詳情
設數列{an}前n的項和為 Sn,且(3﹣m)Sn+2man=m+3(n∈N*).其中m為常數,m≠﹣3且m≠0
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且為等差數列,并求bn
解:(1)由(3﹣m)Sn+2man=m+3,
得(3﹣m)Sn+1+2man+1=m+3,
兩式相減,得(3+m)an+1=2man,(m≠﹣3)
,∴{an}是等比數列
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}前n的項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為常數,m≠-3且m≠0
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且b1=a1=1,bn=
3
2
f(bn-1)
(n∈N*,n≥2),求證{
1
bn
}
為等差數列,并求bn

查看答案和解析>>

科目:高中數學 來源:2005-2006學年北京市首師大附中高二(下)期末數學試卷(解析版) 題型:解答題

設數列{an}前n的項和為 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為常數,m≠-3且m≠0
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且為等差數列,并求bn

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省南京市六合高級中學高三(上)數學寒假作業(4)(解析版) 題型:解答題

設數列{an}前n的項和為 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為常數,m≠-3且m≠0
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且為等差數列,并求bn

查看答案和解析>>

科目:高中數學 來源:《數列》2013年廣東省廣州大學附中高考數學二輪復習檢測(解析版) 題型:解答題

設數列{an}前n的項和為 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為常數,m≠-3且m≠0
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且為等差數列,并求bn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视