【題目】已知拋物線,過點
的直線與拋物線交于
兩點,又過
兩點分別作拋物線的切線,兩條切線交于
點。
(1)證明:直線的斜率之積為定值;
(2)求面積的最小值
科目:高中數學 來源: 題型:
【題目】如圖,已知點E是圓心為O1半徑為2的半圓弧上從點B數起的第一個三等分點,點F是圓心為O2半徑為1的半圓弧的中點,AB、CD分別是兩個半圓的直徑,O1O2=2,直線O1O2與兩個半圓所在的平面均垂直,直線AB、DC共面.
(1)求三棱錐D﹣ABE的體積;
(2)求直線DE與平面ABE所成的角的正切值;
(3)求直線AF與BE所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,橢圓C過點,兩個焦點為
,
,E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,直線EF的斜率為
,直線l與橢圓C相切于點A,斜率為
.
求橢圓C的方程;
求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知R為圓上的一動點,R在x軸,y軸上的射影分別為點S,T,動點P滿足
,記動點P的軌跡為曲線C,曲線C與x軸交于A,B兩點.
(1)求曲線C的方程;
(2)已知直線AP,BP分別交直線于點M,N,曲線C在點Р處的切線與線段MN交于點Q,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記拋物線的焦點為
,點
在拋物線上,
,斜率為
的直線
與拋物線
交于
兩點.
(1)求的最小值;
(2)若,直線
的斜率都存在,且
;探究:直線
是否過定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點為
,點
在橢圓
上.
(1)設點到直線
的距離為
,證明:
為定值;
(2)若是橢圓
上的兩個動點(都不與
重合),直線
的斜率互為相反數,求直線
的斜率(結果用
表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區農村居民家庭人均純收入的變化情況,并預測該地區2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com