【題目】在平面直角坐標系xOy中,直線與拋物線y2=4x相交于不同的A,B兩點,O為坐標原點.
(1) 如果直線過拋物線的焦點且斜率為1,求
的值;
(2)如果,證明:直線
必過一定點,并求出該定點.
【答案】(1)8;(2)證明見解析
【解析】試題分析:(Ⅰ)根據拋物線的方程得到焦點的坐標,設出直線與拋物線的兩個交點和直線方程,是直線的方程與拋物線方程聯立,得到關于y的一元二次方程,根據根與系數的關系,求出弦長;
(Ⅱ)設出直線的方程,同拋物線方程聯立,得到關于y的一元二次方程,根據根與系數的關系表示出數量積,根據數量積等于﹣4,做出數量積表示式中的b的值,即得到定點的坐標.
試題解析:
(1)解, ,
(2)證明 由題意:拋物線焦點為(1,0),設l:x=ty+b,代入拋物線y2=4x,
消去x得y2-4ty-4b=0,設A(x1,y1),B(x2,y2),則y1+y2=4t,y1y2=-4b,
∴·
=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2 =t2y1y2+bt(y1+y2)+b2+y1y2
=-4bt2+4bt2+b2-4b=b2-4b.
令b2-4b=-4,∴b2-4b+4=0,∴b=2,
∴直線l過定點(2,0).∴若·
=-4,則直線l必過一定點.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)當a= 時,求函數f(x)的單調區間;
(Ⅲ)在(Ⅱ)的條件下,設函數g(x)=x2﹣2bx﹣ ,若對于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的導函數為f′(x),滿足xf′(x)+2f(x)= ,且f(e)=
(Ⅰ)求f(x)的表達式
(Ⅱ)求函數f(x)在[1,e2]上的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點(1,1)且與曲線y=x3相切的切線方程為( )
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用系統抽樣方法從960人中抽取32人做問卷調查為此將他們隨機編號為1,2,…,960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為9,若抽到的32人中,編號落入區間[1,450]的人做問卷A,編號落人區間[451,750]的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷C的人數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校有一塊圓心,半徑為200米,圓心角為
的扇形綠地
,半徑
的中點分別為
,
為弧
上的一點,設
,如圖所示,擬準備兩套方案對該綠地再利用.
(1)方案一:將四邊形綠地建成觀賞魚池,其面積記為
,試將
表示為關于
的函數關系式,并求
為何值時,
取得最大?
(2)方案二:將弧和線段
圍成區域建成活動場地,其面積記為
,試將
表示為關于
的函數關系式;并求
為何值時,
取得最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com