(本題9分)已知函數。
(Ⅰ)若在
上的最小值是
,試解不等式
;
(Ⅱ)若在
上單調遞增,試求實數
的取值范圍。
科目:高中數學 來源: 題型:解答題
已知函數
,
為
的導數.
(1)當時,求
的單調區間和極值;
(2)設,是否存在實數
,對于任意的
,存在
,使得
成立?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(14分)已知函數,其中常數
。
(1)當時,求函數
的單調遞增區間;
(2)當時,是否存在實數
,使得直線
恰為曲線
的切線?若存在,求出
的值;若不存在,說明理由;
(3)設定義在上的函數
的圖象在點
處的切線方程為
,當
時,若
在
內恒成立,則稱
為函數
的“類對稱點”。當
,試問
是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知:函數y=f (x)的定義域為R,且對于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當x>0時,f (x)<0恒成立.
證明:(1)函數y=f (x)是R上的減函數.
(2)函數y=f (x)是奇函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com