【題目】已知函數(e為自然對數的底數),其中
.
(1)討論函數的單調性;
(2)若函數的兩個極值點為
,證明:
.
【答案】(1)答案見解析;(2)證明見解析.
【解析】
(1)先求出,再對
分類討論即得函數的單調性;
(2)求出,
,轉化成證明
成立,設
,
,則
,轉化成證明
成立,設
,則
,構造函數
,
,證明
,即
成立,原題得證.
解:(1)的定義域
,
,
,
方程,判別式
,
當時,
,
恒成立,
所以恒成立,函數
在
和
上單調遞增.
當時,
,令
,得
,
,
因為,所以
.
所以當或
或
時,
,
當時,
,
所以在
和
和
是增函數,在
是減函數.
綜上所述:當時,函數
在
和
上單調遞增;>
當時,函數
在
和
和
單調遞增,在
單調遞減.
(2)由(1)可知,當時函數
存在兩個極值點
,且
是方程
的兩根,所以
,且
.
,
,
所以,
,
所以,
又,
所以,要證成立,
即證成立,
因為且,所以
即證成立,
設,
,則
,
只要證成立,
即證成立.
設,則
,構造函數
,
則,所以
在
上單調遞增,
,即
成立,
從而成立.
科目:高中數學 來源: 題型:
【題目】年,某省將實施新高考,
年秋季入學的高一學生是新高考首批考生,新高考不再分文理科,采用
模式,其中語文、數學、外語三科為必考科目,滿分各
分,另外,考生還要依據想考取的高校及專業的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物
門科目中自選
門參加考試(
選
),每科目滿分
分.為了應對新高考,某高中從高一年級
名學生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取n名學生進行調查.
(1)已知抽取的n名學生中含女生人,求n的值及抽取到的男生人數;
(2)學校計劃在高一上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下面表格是根據調查結果得到的
列聯表,請將下面的列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
選擇“物理” | 選擇“歷史” | 總計 | |
男生 | 10 | ||
女生 | 30 | ||
總計 |
(3)在抽取到的名女生中,在(2)的條件下,按選擇的科目進行分層抽樣,抽出
名女生,了解女生對“歷史”的選課意向情況,在這
名女生中再抽取
人,求這
人中選擇“歷史”的人數為
人的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC的中點.將△ABD沿BD折起,使AB⊥AC,連接AE,AC,DE,得到三棱錐A-BCD.
(1)求證:平面ABD⊥平面BCD
(2)若AD=1,二面角C-AB-D的余弦值為,求二面角B-AD-E的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為平面直角坐標系的原點,極軸為
軸的正半軸,且取相等的單位長度,建立平面直角坐標系,直線
的參數方程是
(
是參數),設點
.
(Ⅰ)將曲線的極坐標方程化為直角坐標方程,將直線
的參數方程化為普通方程;
(Ⅱ)設直線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,且橢圓上一點
的坐標為
.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
,
兩點,且以線段
為直徑的圓過橢圓的右頂點
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
,
,
,
,
.
(1)求證:平面平面
;
(2)在線段上是否存在點
,使得平面
與平面
所成銳二面角為
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數,
),以
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程及直線
在
軸正半軸及
軸正半軸截距相等時的直角坐標方程;
(2)若,設直線
與曲線
交于不同的兩點
、
,點
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com