【題目】設函數 ,若曲線
上存在(x0 , y0),使得f(f(y0))=y0成立,則實數m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]
【答案】D
【解析】解:∵﹣1≤cosx≤1,∴ 的最大值為e,最小值為1,∴1≤y0≤e, 顯然f(x)=
是增函數,
(i)若f(y0)>y0 , 則f(f(y0))>f(y0)>y0 , 與f(f(y0))=y0矛盾;
(ii)若f(y0)<y0 , 則f(f(y0))<f(y0)<y0 , 與f(f(y0))=y0矛盾;
∴f(y0)=y0 ,
∴y0為方程f(x)=x的解,即方程f(x)=x在[1,e]上有解,
由f(x)=x得m=x2﹣x﹣lnx,
令g(x)=x2﹣x﹣lnx,x∈[1,e],
則g′(x)=2x﹣1﹣ =
=
,
∴當x∈[1,e]時,g′(x)≥0,
∴g(x)在[1,e]上單調遞增,
∴gmin(x)=g(1)=0,gmax(x)=g(e)=e2﹣e﹣1,
∴0≤m≤e2﹣e﹣1.
故選D.
求出y0的范圍,證明f(y0)=y0 , 得出f(x)=x在[1,e]上有解,再分離參數,利用函數單調性求出m的范圍.
科目:高中數學 來源: 題型:
【題目】已知集合M是滿足下列性質的函數的全體:在定義域內存在
使得
成立。
(1)函數是否屬于集合M?請說明理由;
(2)函數M,求a的取值范圍;
(3)設函數,證明:函數
M。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為
,圓柱表面上的點
在左視圖上的對應點為
,則在此圓柱側面上,從
到
的路徑中,最短路徑的長度為( )
A. B.
C.
D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:
1
證明直線l經過定點并求此點的坐標;
2
若直線l不經過第四象限,求k的取值范圍;
3
若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設
的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
為正方形,四邊形
是矩形,平面
平面
.
(1)求證:平面平面
;
(2)若過直線的一個平面與線段
和
分別相交于點
和
(點
與點
均不重合),求證:
;
(3)判斷線段上是否存在一點
,使得平面
平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點, .
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0.若點B的坐標為(1,2),求點A和點C的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的頂點
,
邊上的中線
所在的直線方程為
,
邊上的高
所在直線的方程為
.
()求
的頂點
、
的坐標.
()若圓
經過不同的三點
、
、
,且斜率為
的直線與圓
相切于點
,求圓
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com