(1)∵a
2+b
2+

ab=c
2,即a
2+b
2﹣c
2=﹣

ab,
∴由余弦定理得:cosC=

=

=﹣

,
又C為三角形的內角,
則C=

;
(2)由題意

=

=

,
∴(cosA﹣tanαsinA)(cosB﹣tanαsinB)=

,
即tan
2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan
2αsinAsinB﹣tanαsin(A+B)+cosAcosB=

,
∵C=

,A+B=

,cosAcosB=

,
∴sin(A+B)=

,cos(A+B)=cosAcosB﹣sinAsinB=

﹣sinAsinB=

,即sinAsinB=

,
∴

tan
2α﹣

tanα+

=

,即tan
2α﹣5tanα+4=0,
解得:tanα=1或tanα=4.