精英家教網 > 高中數學 > 題目詳情

(13分)已知函數的圖象在點處的切線垂直于軸.
(1)求實數的值;
(2)求的極值.

(1)t="-2"  (2)極大值為4極小值

解析試題分析:(1)先求,然后利用即可; (2)由(1)知,然后找出極值點,判斷出單調區間,進而求出極值.
(1) 由.
(2)∵
顯見時, , 時, . 時,
.
考點:導數的幾何意義;函數的單調性與極值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數,其中.
(1)當時,求的單調遞增區間;
(2)若在區間上的最小值為8,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的單調區間;
(2)若函數處取得極值,對,恒成立,求實數的取值范圍;
(3)當時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3+x-16.
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經過原點,求直線l的方程及切點坐標;
(3)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點坐標與切線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區間[1,e]上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2-alnx(a∈R).
(1)若函數f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數f(x)在(1,+∞)上為增函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)求函數的單調區間;
(2)求函數 上的最小值;
(3)對一切的,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知).
(1)若時,求函數在點處的切線方程;
(2)若函數上是減函數,求實數的取值范圍;
(3)令是否存在實數,當是自然對數的底)時,函數的最小值是.若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 ().
(1)若,求函數的極值;
(2)設
① 當時,對任意,都有成立,求的最大值;
② 設的導函數.若存在,使成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视