【題目】已知兩點分別在
軸和
軸上運動,且
,若動點
滿足
.
(1)求出動點P的軌跡對應曲線C的標準方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的參數方程是 (θ為參數),曲線C與l的交點的極坐標為(2,
)和(2,
),
(1)求直線l的普通方程;
(2)設P點為曲線C上的任意一點,求P點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校學生會為了了解學生對于“趣味運動會”的滿意程度,從高一、高二兩個年級分別隨機調查了20個學生,得到學生對“趣味運動會”所設項目的滿意度評分如下:
高一:62 7381 92 9585 74 6453 76
7886 95 6697 78 8882 76 89
高二:73 8362 51 9146 53 7364 82
9348 65 8174 56 5476 65 79
(1)根據兩組數據完成兩個年級滿意度評分的莖葉圖,并通過莖葉圖比較兩個年級滿意度評分的平均值及離散程度(不要求計算出具體值,給出結論即可);
高一 | 莖 | 高二 | ||||||||||
4 | ||||||||||||
3 | 5 | |||||||||||
6 | 4 | 2 | 6 | |||||||||
6 | 8 | 8 | 6 | 4 | 3 | 7 | ||||||
9 | 2 | 8 | 6 | 5 | 1 | 8 | ||||||
7 | 5 | 5 | 2 | 9 |
(2)根據學生滿意度評分,將學生的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
假設兩個年級的評價結果相互獨立.根據所給數據,以事件發生的頻率作為相應事件發生的概率.隨機調查高一、高二各一名學生,記事件A:“高一、高二學生都非常滿意”,事件B:“高一的滿意度等級高于高二的滿意度等級”.分別求事件A、事件B的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣4;坐標系與參數方程
已知曲線C1的參數方程是 (φ為參數),以坐標原點為極點,x軸的正半軸為極軸建立坐標系,曲線C2的坐標系方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,
).
(1)求點A,B,C,D的直角坐標;
(2)設P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某個部件由三個元件按下圖方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作,設三個電子元件的使用壽命(單位:小時)均服從正態分布N(1000,502),且各個元件能否正常相互獨立,那么該部件的使用壽命超過1000小時的概率為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知拋物線的焦點為
,準線與
軸的交點為
,過點
的直線
,拋物線
相交于不同的
兩點.
(1)若,求直線
的方程;
(2)若點在以
為直徑的圓外部,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求函數f(x)的單調區間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}的首項為a1 , 公差為﹣1的等差數列,Sn為其前n項和,若S1 , S2 , S4成等比數列,則a1=( )
A.2
B.﹣2
C.
D.﹣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com