精英家教網 > 高中數學 > 題目詳情
某商店在近30天內每件的銷售價格p元與時間t天的函數關系式是:p=
t+20(0<t<25,t∈N*)
-t+60(25≤t≤30,t∈N*)
,該商品的日銷售量Q件與時間t天的函數關系式是Q=-t+40(0<t≤30,t∈N*),那么這種商品在第幾天日銷售金額的最大?最大值是多少?
分析:應充分考慮自變量的范圍不同銷售的價格表達形式不同,分情況討論即可獲得日銷售金額y關于時間t的函數關系式,根據分段函數不同段上的表達式,分別求最大值最終取較大者分析即可獲得問題解答.
解答:解:由題意可知:日銷售金額y=
(t+20)(-t+40)  ,(0<t<25,t∈N*)
(-t+60)(-t+40)  ,(25≤t≤30,t∈N*)

即y=
-t2+20t+800 ,(0<t<25,t∈N*)
t2-100t+2400  ,(25≤t≤30,t∈N*)

(2)當0<t<25,t∈N+時,y=(t+20)(-t+40)=-t2+20t+800=-(t-10)2+900.
∴t=10(天)時,ymax=900(元),
當25≤t≤30,t∈N+時,y=(-t+60)(-t+40)=t2-100t+2400=(t-50)2-100,
而y=(t-50)2-100,在t∈[25,30]時,函數遞減.
∴t=25(天)時,ymax=525(元).
∵525<900,∴ymax=900(元).
故所求日銷售金額的最大值為900元,且在最近30天中的第10天日銷售額最大.
點評:本題考查的是分段函數應用類問題.在解答的過程當中充分體現了分類討論的思想、二次函數球最值得方法以及問題轉化的能力.值得同學們體會反思.
練習冊系列答案
相關習題

同步練習冊答案
久久精品免费一区二区视