精英家教網 > 高中數學 > 題目詳情
設α∈(0,),若sinα=,則cos(α+)=   
【答案】分析:由α∈(0,),若sinα=,根據同角三角函數的基本關系求出cosα的值,然后把所求的式子利用兩角和的余弦函數公式及特殊角的三角函數值化簡后,將sinα和cosα的值代入即可求出值.
解答:解:由α∈(0,),若sinα=,得到cosα==,
cos()=cosα-sinα)=-=
故答案為:
點評:此題考查學生靈活運用同角三角函數間的基本關系及兩角差的余弦函數公式化簡求值,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•江蘇二模)如圖是一塊長方形區域ABCD,AD=2(km),AB=1(km).在邊AD的中點O處,有一個可轉動的探照燈,其照射角∠EOF始終為
π
4
,設∠AOE=α(0≤α≤
4
),探照燈O照射在長方形ABCD內部區域的面積為S.
(1)當0≤α<
π
2
時,寫出S關于α的函數表達式;
(2)當0≤α≤
π
4
時,求S的最大值.
(3)若探照燈每9分鐘旋轉“一個來回”(OE自OA轉到OC,再回到OA,稱“一個來回”,忽略OE在OA及OC反向旋轉時所用時間),且轉動的角速度大小一定,設AB邊上有一點G,且∠AOG=
π
6
,求點G在“一個來回”中,被照到的時間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+
2
x
+6
,其中a為實常數.
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范圍;
(2)已知a=
3
4
,P1,P2是函數f(x)圖象上兩點,若在點P1,P2處的兩條切線相互平行,求這兩條切線間距離的最大值;
(3)設定義在區間D上的函數y=s(x)在點P(x0,y0)處的切線方程為l:y=t(x),當x≠x0時,若
s(x)-t(x)
x-x0
>0
在D上恒成立,則稱點P為函數y=s(x)的“好點”.試問函數g(x)=x2f(x)是否存在“好點”.若存在,請求出所有“好點”坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2對一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)設s,t∈[0,1],且s<t,求證:f(s)≤f(t)
(3)試比較f(
1
2n
)
1
2n
+2
(n∈N)的大;
(4)某同學發現,當x=
1
2n
(n∈N)時,有f(x)<2x+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區一模)將邊長分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個、第2個、…、第n個陰影部分圖形.容易知道第1個陰影部分圖形的周長為8.設前n個陰影部分圖形的周長的平均值為f(n),記數列{an}滿足an=
f(n),當n為奇數
f(an-1) ,當n為偶數

(1)求f(n)的表達式;
(2)寫出a1,a2,a3的值,并求數列{an}的通項公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•長寧區二模)設拋物線C:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點,已知|P1P2|=8.
(1)求拋物線C的方程;
(2)過點M(3,0)作方向向量為
d
=(1,a)
的直線與曲線C相交于A,B兩點,求△FAB的面積S(a)并求其值域;
(3)設m>0,過點M(m,0)作直線與曲線C相交于A,B兩點,問是否存在實數m使∠AFB為鈍角?若存在,請求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视