【題目】如圖,四棱錐的底面是邊長為1的正方形,
垂直于底面
,
.
(1)求證;
(2)求平面與平面
所成二面角的大小;
(3)設棱的中點為
,求異面直線
與
所成角的大小.
科目:高中數學 來源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心
位于
軸正半軸上,與直線
相切且被軸
截得的弦長為
,圓
的面積小于13.
(Ⅰ)求圓的標準方程;
(Ⅱ)設過點的直線
與圓
交于不同的兩點
,以
為鄰邊作平行四邊形
.是否存在這樣的直線
,使得直線
與
恰好平行?如果存在,求出
的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2013年春節,有超過20萬名廣西、四川等省籍的外來務工人員選擇駕駛摩托車沿321國道返鄉過年,為保證他們的安全,交管部門在321國道沿線設立多個駕乘人員休息站,交警小李在某休息站連續5天對進站休息的駕駛人員每隔50輛摩托車,就進行省籍詢問一次,詢問結果如下圖所示.
(Ⅰ)問交警小李對進站休息的駕駛人員的省籍詢問采用的是什么抽樣方法?
(Ⅱ)用分層抽樣的方法對被詢問了省籍的駕駛人員進行抽樣,若廣西籍的有5名,則四川籍的應抽取幾名?
(Ⅲ)在上述抽出的駕駛人員中任取2名,求至少有一名駕駛人員是廣西籍的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右頂點是雙曲線
的頂點,且橢圓
的上頂點到雙曲線
的漸近線的距離為
。
(1)求橢圓的方程;
(2)若直線與
相交于
兩點,與
相交于
兩點,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,圓
與
軸的一個交點為
,圓
的圓心為
,
為等邊三角形.
(1)求拋物線的方程
(2)設圓與拋物線
交于
、
兩點,點
為拋物線
上介于
、
兩點之間的一點,設拋物線
在點
處的切線與圓
交于
、
兩點,在圓
上是否存在點
,使得直線
、
均為拋物線
的切線,若存在求
點坐標(用
、
表示);若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】目前,學案導學模式已經成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響,我校隨機抽取100名學生,對學習成績和學案使用程度進行了調查,統計數據如表所示:
已知隨機抽查這100名學生中的一名學生,抽到善于使用學案的學生概率是0.6.
參考公式:,其中
.
(1)請將上表補充完整(不用寫計算過程);
(2)試運用獨立性檢驗的思想方法有多大的把握認為學生的學習成績與對待學案的使用態度有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數解析式;
〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某專營店經銷某商品,當售價不高于10元時,每天能銷售100件,當價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數;
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求函數在區間
上的值域
(2)把函數圖象所有點的上橫坐標縮短為原來的
倍,再把所得的圖象向左平移
個單位長度
,再把所得的圖象向下平移1個單位長度,得到函數
, 若函數
關于點
對稱
(i)求函數的解析式;
(ii)求函數單調遞增區間及對稱軸方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com