【題目】在平面直角坐標系中,將曲線
(
為參數)上任意一點
經過伸縮變換
后得到曲線
的圖形.以坐標原點
為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)點P為曲線上的任意一點,求點P到直線
的距離的最大值及取得最大值時點P的坐標.
科目:高中數學 來源: 題型:
【題目】設F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=
,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品自生產并投入市場以來,生產企業為確保產品質量,決定邀請第三方檢測機構對產品進行質量檢測,并依據質量指標來衡量產品的質量.當
時,產品為優等品;當
時,產品為一等品;當
時,產品為二等品.第三方檢測機構在該產品中隨機抽取500件,繪制了這500件產品的質量指標
的條形圖.用隨機抽取的500件產品作為樣本,估計該企業生產該產品的質量情況,并用頻率估計概率.
(1)從該企業生產的所有產品中隨機抽取1件,求該產品為優等品的概率;
(2)現某人決定購買80件該產品.已知每件成本1000元,購買前,邀請第三方檢測機構對要購買的80件產品進行抽樣檢測.買家、企業及第三方檢測機構就檢測方案達成以下協議:從80件產品中隨機抽出4件產品進行檢測,若檢測出3件或4件為優等品,則按每件1600元購買,否則按每件1500元購買,每件產品的檢測費用250元由企業承擔.記企業的收益為元,求
的分布列與數學期望;
(3)商場為推廣此款產品,現面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據拋硬幣的結果,操控機器人在方格上行進,已知硬幣出現正、反面的概率都是,方格圖上標有第0格、第1格、第2格、……、第50格.機器人開始在第0格,客戶每擲一次硬幣,機器人向前移動一次,若擲出正面,機器人向前移動一格(從
到
),若擲出反面,機器人向前移動兩格(從
到
),直到機器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結束,若機器人停在“勝利大本營”,則可獲得優惠券.設機器人移到第
格的概率為
,試證明
是等比數列,并解釋此方案能否吸引顧客購買該款產品.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據其尺寸的數據分成,
,
,
,
,
,
組,得到如圖所示的頻率分布直方圖.若尺寸落在區間
之外,則認為該零件屬“不合格”的零件,其中
,
分別為樣本平均和樣本標準差,計算可得
(同一組中的數據用該組區間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出
個零件,標上記號,并從這
個零件中再抽取
個,求再次抽取的
個零件中恰有
個尺寸小于
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,點
在
上.
(1) 求橢圓的方程;
(2) 設分別是橢圓
的上、下焦點,過
的直線
與橢圓
交于不同的兩點
,求
的內切圓的半徑的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規則是:每人按先A后B的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為和
,且在A,B兩點投中與否相互獨立.
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規則投籃兩次,求甲得分比乙高的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設三棱錐的每個頂點都在球
的球面上,
是面積為
的等邊三角形,
,
,且平面
平面
.
(1)求球的表面積;
(2)證明:平面平面
,且平面
平面
.
(3)與側面平行的平面
與棱
,
,
分別交于
,
,
,求四面體
的體積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com