【題目】已知橢圓C:過點A
,兩個焦點為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。
科目:高中數學 來源: 題型:
【題目】在一個十進制正整數中,如果它含有偶數(包括零)個數字 8 ,則稱它為“優數” ,否則就稱它為“非優數” .那么,長度(位數)不超過 (
是正整數)的所有“優數” 的個數是 __________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的收益與投資額
成正比,且投資1萬元時的收益為
萬元,投資股票等風險型產品的收益
與投資額
的算術平方根成正比,且投資1萬元時的收益為0.5萬元,
(1)分別寫出兩種產品的收益與投資額的函數關系;
(2)該家庭現有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取某校高一100名學生的期末考試英語成績(他們的英語成績都在80分140分之間),將他們的英語成績(單位:分)分成:
,
,
,
,
六組,得到如圖所示的部分頻率分布直方圖,已知成績處于
內與
內的頻數之和等于成績處于
內的頻數,根據圖中的信息,回答下列問題:
(1)求頻率分布直方圖中未畫出的小矩形的面積之和;
(2)求成績處于內與
內的頻率之差;
(3)用分層抽樣的方法從成績不低于120分的學生中選取一個容量為6的樣本,將該樣本看成一個總體,從中任選2人,求這2人中恰有一人成績低于130分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
,點
滿足
,記點
的軌跡為
.
(1)求的方程;
(2)設直線與
交于
、
兩點,求
的面積(
為坐標原點);
(3)設是線段
中垂線上的動點,過
作
的兩條切線
、
,
、
分別為切點,判斷是否存在定點
,直線
始終經過點
,若存在,求出點
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
,且兩個焦點的坐標分別為
,
.
(1)求的方程;
(2)若,
,
為
上的三個不同的點,
為坐標原點,且
,求證:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩地的高速公路全長166千米,汽車從甲地進入該高速公路后勻速行駛到乙地,車速(千米/時).已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分為
,固定部分為220元.
(1)把全程運輸成本(元)表示為速度
(千米/時)的函數,并指出這個函數的定義域;
(2)汽車應以多大速度行駛才能使全程運輸成本最小?最小運輸成本為多少元?(結果保留整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點M、F分別是線段AA1、BC的中點.
(1)求證:AF⊥DD1;
(2)求證:AF∥平面MBC1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com