【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側,下列命題正確的是____________(寫出所有正確命題的序號)
①當平面ABE∥平面CDF時,AC∥平面BFDE
②當平面ABE∥平面CDF時,AE∥CD
③當A、C重合于點P時,PG⊥PD
④當A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150
科目:高中數學 來源: 題型:
【題目】某機構通過對某企業2018年的前三個季度生產經營情況的調查,得到每月利潤(單位:萬元)與相應月份數
的部分數據如表:
3 | 6 | 9 | |
241 | 244 | 229 |
(1)根據上表數據,請從下列三個函數中選取一個恰當的函數描述與x的變化關系,并說明理由:
,
,
(2)利用(1)中選擇的函數:
①估計月利潤最大的是第幾個月,并求出該月的利潤;
②預估年底12月份的利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設0<a<1,則函數f(x)=loga||( )
A.在(-∞,-1)和(1,+∞)上單調遞減,在(-1,1)上單調遞增
B.在(-∞,-1)和(1,+∞)上單調遞增,在(-1,1)上單調遞減
C.在(-∞,-1)和(1,+∞)上單調遞增,在(-1,1)上單調遞增
D.在(-∞,-1)和(1,+∞)上單調遞減,在(-1,1)上單調遞減
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調查了位家長,得到如下統計表:
(1)據此樣本,能否有的把握認為“接受程度”與家長性別有關?說明理由;
(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選
人交流發言,設
是發言人中持“贊成”態度的人數,求
的分布列及數學期望.
參考數據
參考公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】光對物體的照度與光的強度成正比,比例系數為,與光源距離的平方成反比,比例系數為
均為正常數
如圖,強度分別為8,1的兩個光源A,B之間的距離為10,物體P在連結兩光源的線段AB上
不含A,
若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數,并指明其定義域;
當物體P在線段AB上何處時,可使物體P受到A,B兩光源的總照度最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為正方形,側棱
底面ABCD,且
,E,F,H分別是線段PA,PD,AB的中點.
(1)求證:平面EFH;
(2)求證:平面AHF;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商銷售某種產品,在一個銷售季度內,每售出該產品獲利潤
元;未售出的產品,每
虧損
元.根據以往的銷售記錄,得到一個銷售季度內市場需求量的頻率分布直方圖,如圖所示.經銷商為下一個銷售季度購進了
該產品.用
(單位:
,
)表示下一個銷售季度內的市場需求量,
(單位:元)表示下一個銷售季度內經銷該產品的利潤.
(1)將表示為
的函數;
(2)根據直方圖估計利潤不少于
元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)若函數y=f(x)的圖象與直線y=x+a沒有交點,求a的取值范圍;
(3)若函數h(x)=+m2x-1,x∈[0,log23],是否存在實數m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com