【題目】設函數f(x)=ln(1+x).
(1)若曲線y=f(x)在點(0,f(0))處的切線方程為y=g(x),當x≥0時,f(x)≤ ,求t的最小值;
(2)當n∈N*時,證明: .
【答案】
(1)解: f(x)的導數為f′(x)= ,
f(0)=0,f′(0)=1,切線的方程為y=x,即g(x)=x,
當x≥0時,f(x)≤ ,即為
ln(x+1)﹣ ≤0,x≥0恒成立.
設h(x)=ln(x+1)﹣ ,x≥0,
h(x)≤0,h(1)≤0即t≥﹣1+2ln2>0.
h′(x)= ﹣
=
=﹣
,
當0<t< 時,0<x<
時,h′(x)>0,h(x)遞增,
故0<x< 時,h(x)>h(0)=0,與x≥0,h(x)≤h(0)=0,相矛盾,則0<t<
不合題意.
當t= 時,h′(x)=﹣
<0,h(x)在[0,+∞)遞減,
故當x≥0時,h(x)≤h(0)=0,因此t的最小值為 ;
(2)證明:由(1)可得ln(1+x)< ,x≥0,x=0時取得等號.
取x= ,ln
<
=
+
(
﹣
),
則ln <
+
(
﹣
),(1)
ln <
+
(
﹣
),(2)
…,ln <
+
(
﹣
),(n)
將n個不等式相加,由對數的運算性質,可得
ln2=ln(
…
)<
+
+…+
+
(
﹣
),
則
【解析】(1)求出導數,求得切線的斜率和切點,可得切線的方程,即g(x)=x.由題意可得ln(x+1)﹣ ≤0,x≥0恒成立.設h(x)=ln(x+1)﹣
,x≥0,求出導數,求得單調區間,可得最小值;(2)由(1)可得ln(1+x)<
,x≥0,x=0時取得等號.取x=
,ln
<
=
+
(
﹣
),運用對數的運算性質和累加法,及不等式的性質,即可得證.
【考點精析】關于本題考查的函數的最大(小)值與導數,需要了解求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知函數對一切實數
都有
成立,且
.
(1)求的值;
(2)求的解析式;
(3)已知,設
:當
時,不等式
恒成立;Q:當
時,
是單調函數。如果滿足
成立的
的集合記為
,滿足Q成立的
的集合記為
,求A∩(CRB)(
為全集).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩個班級共有105名學生,某次數學考試按照“大于等于85分為優秀,85分以下為非優秀”的原則統計成績后,得到如下列聯表。
優秀 | 非優秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知從甲、乙兩個班級中隨機抽取1名學生,其成績為優秀的概率為.
(1)請完成上面的列聯表;
(2)能否有把握認為成績與班級有關系?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知某曲線C的極坐標方程為,直線
的極坐標方程為
(1)求該曲線C的直角坐標系方程及離心率
(2)已知點為曲線C上的動點,求點
到直線
的距離的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】響應“文化強國建設”號召,某市把社區圖書閱覽室建設增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調查,統計顯示,男士喜歡閱讀古典文學的有64人,不喜歡的有56人;女士喜歡閱讀古典文學的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關系?
(2)為引導市民積極參與閱讀,有關部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學.現從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數,求
的分布列及數學期望
.
附:,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小學為迎接校運動會的到來,在三年級招募了16名男志愿者和14名女志愿者.調查發現,男、女志愿者中分別各有10人和6人喜歡運動,其余人員不喜歡運動.
(1)根據以上數據完成2×2列聯表,并說明是否有95%的把握認為性別與喜歡運動有關;
喜歡運動 | 不喜歡運動 | 總計 | |
男 | |||
女 | |||
總計 |
(2)如果喜歡運動的女志愿者中恰有4人懂得醫療救護,現從喜歡運動的女志愿者中抽取2名負責處理應急事件,求抽出的2名志愿者都懂得醫療救護的概率.
附:K2=,
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,點
在橢圓
上.
(1)求橢圓的標準方程;
(2)是否存在斜率為的直線
與橢圓
相交于
兩點,使得
是橢圓的左焦點
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com