【題目】已知a,b,c為△ABC的三個內角A,B,C的對邊,向量=(
, ﹣1),
=(cosA,sinA).若
⊥
, 且αcosB+bcosA=csinC,則角A,B的大小分別為( 。
A.,
B.,
C.,
D.,
科目:高中數學 來源: 題型:
【題目】定義在R上的函數y=f(x)是減函數,且對任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當1≤x≤4時,x﹣3y的最大值為( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設施,其軸截面如圖中實線所示. 是等腰梯形,
米,
(
在
的延長線上,
為銳角). 圓
與
都相切,且其半徑長為
米.
是垂直于
的一個立柱,則當
的值設計為多少時,立柱
最矮?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的右頂點為
,左、右焦點分別為
、
,過點
且斜率為的直線與
軸交于點
, 與橢圓交于另一個點
,且點
在
軸上的射影恰好為點
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率大于
的直線與橢圓交于
兩點(
),若
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研機構研發了某種高新科技產品,現已進入實驗階段.已知實驗的啟動資金為10萬元,從實驗的第一天起連續實驗,第天的實驗需投入實驗費用為
元
,實驗30天共投入實驗費用17700元.
(1)求的值及平均每天耗資最少時實驗的天數;
(2)現有某知名企業對該項實驗進行贊助,實驗天共贊助
元
.為了保證產品質量,至少需進行50天實驗,若要求在平均每天實際耗資最小時結束實驗,求
的取值范圍.(實際耗資=啟動資金+試驗費用-贊助費)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求證:平面ABC1⊥平面A1ACC1;
(2)設D是線段BB1的中點,求三棱錐D﹣ABC1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段: ,
,…,
,得到如圖所示的頻率分布直方圖.
(1)求圖中實數的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數學成績不低于60分的人數;
(3)若從數學成績在與
兩個分數段內的學生中隨機選取2名學生,求這2名學生的數學成績之差的絕對值不大于10的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com