精英家教網 > 高中數學 > 題目詳情
(本小題滿分13分)
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜
率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.
解:(1)∵焦距為4,∴c=2………………………………………………1分
又∵的離心率為……………………………… 2分
,∴a=,b=2………………………… 4分
∴標準方程為………………………………………6分
(2)設直線l方程:y=kx+1,A(x1,y1),B(x2,y2),
……………………7分
∴x1+x2=,x1x2=
由(1)知右焦點F坐標為(2,0),
∵右焦點F在圓內部,∴<0………………………………8分
∴(x1 -2)(x2-2)+ y1y2<0
即x1x2-2(x1+x2)+4+k2 x1x2+k(x1+x2)+1<0…………………… 9分
<0…………… 11分
∴k<……………………………………………………………… 12分
經檢驗得k<時,直線l與橢圓相交,
∴直線l的斜率k的范圍為(-∞,)……………………………13
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

橢圓短軸是2,長軸是短軸的2倍,則橢圓中心到其準線的距離為
A        B       C       D

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

點P(-3,1)在橢圓的左準線上,過點P斜率為的光線,
經直線y=-2反射后通過橢圓的左焦點,則這個橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1是橢圓(a>b>0)的一個焦點,PQ是經過另一個焦點F2的弦,則△PF1Q的周長是(  )
A.4aB.4bC.2aD.2b

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設橢圓上的動點Q,過動點Q作橢圓的切線l,過右焦點作l的垂線,垂足為P,則點P的軌跡方程為(  )
A.x2+y2=a2B.x2+y2=b2
C.x2+y2=c2D.x2+y2=e2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分) 如圖,設橢圓的右頂點與上頂點分別
為A、B,以A為圓心,OA為半徑的圓與以B為圓心,OB為半徑的圓相交于點O、P.

(1)求點P的坐標;
(2) 若點P在直線上,求橢圓的離心率;
(3) 在(2)的條件下,設M是橢圓上的一動點,且點N(0,1)到橢圓上點的最近距離為3,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過橢圓中心的直線與橢圓交于A、B兩點,右焦點為F2,則△ABF2
 
的最大面積是(   )                                                                                                   
A.                         B.                         C.                  D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,用與底面成30°角的平面截圓柱得一橢圓截線,則該橢圓的離心率為  (     )
  
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的離心率,則的取值范圍是                          (   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视