精英家教網 > 高中數學 > 題目詳情
函數y=
x2+2xx2+2x+2
的值域為
[-1,1)
[-1,1)
分析:由題意求得函數的定義域為R,然后換元,令t=x2+2x,求出t的范圍,把原式分子分母同時除以t,然后借助于極限觀點可求函數的值域.
解答:解:∵x2+2x+2>0恒成立,所以原函數的定義域為R,
令t=x2+2x=(x+1)2-1≥-1,
當t=0時,y=0;
當t≠0時,y=
x2+2x
x2+2x+2
=
t
t+2
=
1
1+
2
t

若-1≤t<0,則1+
2
t
≤-1
,-1≤
1
1+
2
t
<0

若t>0,則1+
2
t
>1
0<
1
1+
2
t
<1

綜上,函數y=
x2+2x
x2+2x+2
的值域為[-1,1).
故答案為[-1,1).
點評:本題考查了函數的值域,考查了換元法,同時聯系了區間取倒數時的極限思想,解答此題的關鍵是換元后注意變量t的范圍,屬易錯題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

把函數y=lnx-2的圖象按向量
a
=(-1,2)
平移得到函數y=f(x)的圖象.
(I)若x>0,試比較f(x)與
2x
x+2
的大小,并說明理由;
(II)若不等式
1
2
x2≤f(x2)+m2-2bm-3
.當x,b∈[-1,1]時恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題:
(1)函數f(x)=
x2-2x
x-2
是奇函數;
(2)函數f(x)在(a,b)和(c,d)都是增函數,若x1∈(a,b),x2∈(c,d),且x1<x2則一定有f(x1)<f(x2).
(3)函數f(x)在R上為奇函數,且f(x)=
x
+1,x>0
,則當x<0,f(x)=y=-
-x
-1
;
(4)函數y=x+
1-2x
的值域為{y|y≤1}.
以上命題中所有正確的序號是
(3)
(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+ax+b,點(a,b)為函數y=
5-2x
x-2
的對稱中心,設數列{an},{bn}滿足4an+1=f(an)+2an+2(n∈N*),a1=6,且bn=
1
an+4
,{bn}的前n項和為Sn
(1)求a,b的值;
(2)求證:Sn
1
6
;
(3)求證:an+2>22n-1+2

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=
3-2x
x+1
的對稱中心為(-1,-2);
②函數y=21-x在定義域內遞增;  
③函數y=log3(x+
1
x
-3)
的值域為R;      
④函數f(x)滿足f(x)f(x+2)=1,則f(2013)=f(1);
⑤若x2-2mx+m2-1=0兩根都大于-2,則m>-1.
則上述命題正確的是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

在研究“原函數圖象與其反函數的圖象的交點是否在直線y=x上”這個課題時,我們可以分三步進行研究:
①首先選取如下函數:y=2x+1,y=
2x
x+1
,y=-
x+1
;
②求出以上函數的圖象與其反函數的圖象的交點坐標:y=2x+1與其反函數y=
x-1
2
的圖象的交點坐標為(-1,-1);y=
2x
x+1
與其反函數y=
x
2-x
的圖象的交點坐標為(0,0)、(1,1);y=-
x+1
與其反函數y=x2-1(x≤0)的圖象的交點坐標為(
1-
5
2
,
1-
5
2
),(-1,0),(0,-1);
③觀察分析上述結果,可得出研究結論為
 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视