【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下列表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.
(1)請將上表補充完整(不用寫計算過程);
(2)能否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中
)
科目:高中數學 來源: 題型:
【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得.1 000張獎券為一個開獎單位,設特等獎1個,一等獎10個,二等獎50個.設1張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,求:
(1)P(A),P(B),P(C).
(2)1張獎券的中獎概率.
(3)1張獎券不中特等獎,且不中一等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+ax-a(a∈R且a≠0)在點處的切線
與直線平行, (1)求實數a的值,
(2)求此時f(x)在[-2,1]上的最大、最小值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的焦距為
,點
在
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點在
上,點
的軌跡為曲線
,過原點作直線
與曲線
交于
、
兩點,點
,證明:
為定值,并求出定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
)的離心率為
,短軸的一個端點為
.過橢圓左頂點
的直線
與橢圓的另一交點為
.
(1)求橢圓的方程;
(2)若與直線
交于點
,求
的值;
(3)若,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2-3x+lnx.
(Ⅰ)求函數f(x)的極值;
(Ⅱ)若對于任意的x1,x2∈(1,+∞),x1≠x2,都有恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是長軸長為
的橢圓
:
上異于頂點的一個動點,
為坐標原點,
為橢圓的右頂點,點
為線段
的中點,且直線
與
的斜率之積恒為
.
(1)求橢圓的方程;
(2)設過左焦點且不與坐標軸垂直的直線
交橢圓于
兩點,線段
的垂直平分線與
軸交于點
,點
橫坐標的取值范圍是
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來空氣質量逐步惡化,霧霾天氣現象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關,在市第一人民醫院隨機對入院50人進行了問卷調查,得到如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,現在從患心肺疾病的10位女性中,選出3位進行其他方面的排查,其中患胃病的人數為,求
的分布列、數學期望.
參考公式: ,其中
.
下面的臨界值僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com