【題目】某地區不同身高的未成年男性的體重平均值如下表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |
體重/ | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 | 38.85 | 47.25 | 55.05 |
(1)根據表格提供的數據,能否建立恰當的函數模型,使它能比較近似地反映這個地區未成年男性體重與身高
的函數關系?試寫出這個函數模型的關系式.
(2)若體重超過相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個地區一名身高為,體重為
的在校男生的體重是否正常?
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數m的取值范圍;
(2)當m=2時,若函數k(x)=f(x)-h(x)在區間(1,3)上恰有兩個不同零點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分別為AC,DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E-BF-C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,平面
平面
,
,
.設
,
分別為
,
中點.
(1)求證:平面
;
(2)求證:平面
;
(3)試問在線段上是否存在點
,使得過三點
,
,
的平面內的任一條直線都與平面
平行?若存在,指出點
的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】按照《國務院關于印發“十三五”節能減排綜合工作方案的通知》(國發〔2016〕74號)的要求,到2020年,全國二氧化硫排放總量要控制在1580萬噸以內,要比2015年下降15%.假設“十三五”期間每一年二氧化硫排放總量下降的百分比都相等,2015年后第年的二氧化硫律放總量最大值為
萬噸.
(1)求的解析式;
(2)求2019年全國二氧化賴持放總量要控制在多少萬晚以內(精確到1萬噸).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某理財公司有兩種理財產品A和B,這兩種理財產品一年后盈虧的情況如下(每種理財產品的不同投資結果之間相互獨立):
產品A
投資結果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
產品B
投資結果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙兩人分別選擇了產品A和產品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數p的取值范圍;
(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據,則選用哪種產品投資較理想?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數方程為
(
為參數,
),以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線的普通方程和曲線
的直角坐標方程;
(2)已知曲線和曲線
交于
兩點(
在
之間),且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品促銷活動設計了一個摸獎游戲:在一個口袋中裝有4個紅球和6個白球,這些球除顏色外完全相同,顧客一次從中摸出3個球,若3個都是白球則無獎勵,若有1個紅球則獎勵10元購物券,若有2個紅球則獎勵20元購物券,若3個都是紅球則獎勵30元購物券.
(Ⅰ)求中獎的概率;
(Ⅱ)求顧客摸獎一次獲得購物券獎勵的平均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com