精英家教網 > 高中數學 > 題目詳情
12、已知函數f(x+1)是定義在R上的奇函數,若對于任意給定的不等實數x1、x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,則不等式f(1-x)<0的解集為(  )
分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函數f(x)是定義在R上的增函數;再利用函數f(x+1)是定義在R上的奇函數得到函數f(x)過(1,0)點,二者相結合即可求出不等式f(1-x)<0的解集.
解答:解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函數f(x)是定義在R上的減函數 ①.
又因為函數f(x+1)是定義在R上的奇函數,所以有函數f(x+1)過點(0,0);
故函數f(x)過點(1,0)②.
①②相結合得:x<1時,f(x)<0.
故不等式f(1-x)<0轉化為1-x>1?x<0.
故選C.
點評:本題主要考查函數奇偶性和單調性的綜合應用問題.關鍵點有兩處:①判斷出函數f(x)的單調性;②利用奇函數的性質得到函數f(x)過(1,0)點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

12、已知函數f(x-1)=x2-2x+2,則f(x)=
x2+1

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法中:
①y=2x與y=log2x互為反函數,其圖象關于y=x對稱;
②函數y=f(x)滿足f(2+x)=f(2-x),則其圖象關于直線x=2對稱;
③已知函數f(x-1)=x2-2x+1.則f(5)=26;
④已知△ABC,P為平面ABC外任意一點,且PA⊥PB⊥PC,則點P在平面ABC內的正投影是△ABC的垂心.
正確的是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x+1)為奇函數,函數f(x-1)為偶函數,且f(0)=2,則f(4)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•無錫二模)已知函數f(x+1)為奇函數,函數f(x-1)為偶函數,且f(0)=2,則f(4)=
-2
-2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x+1)=2x-1,則f(5)=
8
8

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视