精英家教網 > 高中數學 > 題目詳情
若定義在R上的減函數y=f(x),對于任意x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0都成立,且函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍是( 。
A.[-
1
4
,1)
B.[-
1
4
,1]
C.(-
1
2
,1]
D.[-
1
2
,1]
根據函數y=f(x-1)的圖象關于點(1,0)對稱,可知函數是奇函數,所以由f(x2-2x)+f(2y-y2)≤0得f(x2-2x)≤f(-2y+y2),∵在R上的減函數y=f(x),∴x2-2x≥-2y+y2,∴x≥y或x+y≤2,∵1≤x≤4,∴-
1
2
y
x
≤1
,故選D.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若定義在R上的減函數y=f(x),對于任意x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0都成立,且函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的減函數y=f(x),對任意的a,b∈R,不等式f(a2-2a)≤f(b2-2b)成立,則當1≤a≤4時,
b
a
的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的減函數y=f(x),對于任意的x,y∈R,不等式f(x2-2x)≤-f(2y-y2)成立;且函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍
[-
1
2
,1 ]
[-
1
2
,1 ]

查看答案和解析>>

科目:高中數學 來源:2012年廣東省華南師大附中高三綜合測試數學試卷(理科)(解析版) 題型:選擇題

若定義在R上的減函數y=f(x),對任意的a,b∈R,不等式f(a2-2a)≤f(b2-2b)成立,則當1≤a≤4時,的取值范圍是( )
A.[-,1)
B.[-,1]
C.[-,1]
D.(-,1]

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视