精英家教網 > 高中數學 > 題目詳情
已知函數y=-3cos(2x+
π
3
)+4
按向量
a
平移后所得函數y=f(x)是奇函數,則
a
可以是(  )
分析:
a
=(μ,v),可求得函數y=-3cos(2x+
π
3
)+4
的按向量
a
平移后所得函數的函數解析式,利用正弦函數與余弦函數相互轉化的規律即可得到答案.
解答:解:設
a
=(μ,v),
則函數y=-3cos(2x+
π
3
)+4
的按向量
a
平移后得:
y=f(x)=-3cos[2(x-μ)+
π
3
]+4+v
=-3cos[2x+(
π
3
-2μ)]+4+v,
∵函數y=f(x)是奇函數,
π
3
-2μ=kπ+
π
2
,4+v=0,
∴μ=-
2
-
π
12
,
a
=(-
2
-
π
12
,-4),
令k=0,得
a
=(-
π
12
,-4),即選項B.
故選B.
點評:本題考查函數y=Asin(ωx+φ)的圖象變換,求得按向量
a
平移后所得函數的函數解析式是關鍵,余弦函數轉化為正弦函數是難點,考查分析問題、轉化解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數y=3cos(2x+
π4
)

(1)求該函數的周期,對稱軸方程,單調增區間;
(2)求該函數的最值及相應x值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=3cos(2x+φ)的圖象關于點
3
中心對稱,則|φ|的最小值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=3cos(x+φ)+2的圖象關于直線x=
π
4
對稱,則φ的一個可能取值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=3cos(2x+
π
3
) 的定義域為[a,b],值域為[-1,3],則b-a的值不可能是( 。
A、
π
3
B、
π
2
C、
4
D、π

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视