精英家教網 > 高中數學 > 題目詳情
數列{an}的前n項的和Sn=2an-1(n∈N*),數列{bn}滿足:b1=3,Sn+1=an+bn(n∈N*).
(1)求證:數列{an}為等比數列;
(2)求數列{bn}的前n項的和Tn
分析:(1)由Sn+1=an+bn得,an+1=Sn+1-Sn=(2an+1-1)-(2an-1),可得遞推式,根據等比數列定義及遞推式可判斷{an}為等比數列;
(2)利用累加法可求得bn,然后利用分組求和及等差數列等比數列的前n項和公式可求;
解答:解:(1)∵an+1=Sn+1-Sn=(2an+1-1)-(2an-1),
∴an+1=2an,
又a1=S1=2a1-1,∴a1=1≠0,
因此數列{an}為公比是2、首項是1的等比數列;
(2)易得bn+1-bn=2n-1,∴bn-bn-1=2n-2,bn-1-bn-2=2n-3,…,b2-b1=20=1,
以上各式相加得,bn+1-b1=1+2+3+…+2n-1=2n-1,
bn+1=2n+2,∴bn=2n-1+2,
∴Tn=b1+b2+…+bn=2n+
1-2n
1-2
=2n+2n-1(n∈N*).
點評:本題考查等差數列通項公式、等比數列判斷及數列求和,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等比數列{an}的公比q≠1,Sn表示數列{an}的前n項的和,Tn表示數列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

若數列{an}的通項an=
1
pn-q
,實數p,q滿足p>q>0且p>1,sn為數列{an}的前n項和.
(1)求證:當n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數列;
(2)若數列{bn}滿足b1=2,bn+1=2an+bn,求數列{bn}的通項公式bn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•商丘二模)數列{an}的前n項和為Sn,若數列{an}的各項按如下規律排列:
1
2
1
3
,
2
3
,
1
4
,
2
4
,
3
4
,
1
5
2
5
,
3
5
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結論:
①a24=
3
8
;
②數列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數列;
③數列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4
;
④若存在正整數k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結論是
①③④
①③④
.(將你認為正確的結論序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①若數列{an}的前n項和Sn=2n+1,則數列{an}為等比數列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設函數f(x)=x|x-a|+b,則函數f(x)為奇函數的充要條件是a2+b2=0;
④設直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视