【題目】如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BEF,D、E在AB上,F在BC上.在△ACB中任取一點,這一點恰好在圖中陰影部分的概率是( )
A.
B.1﹣
C.
D.1﹣
科目:高中數學 來源: 題型:
【題目】和諧高級中學共有學生570名,各班級人數如表:
一班 | 二班 | 三班 | 四班 | |
高一 | 52 | 51 | y | 48 |
高二 | 48 | x | 49 | 47 |
高三 | 44 | 47 | 46 | 43 |
已知在全校學生中隨機抽取1名,抽到高二年級學生的概率是 .
(1)求x,y的值;
(2)現用分層抽樣的方法在全校抽取114名學生,應分別在各年級抽取多少名?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且滿足a1=3,Sn+1=3(Sn+1)(n∈N*). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)在數列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ對一切n∈N*恒成立,求實數λ的取值范圍;
(Ⅲ)令Tn= +
+
+…+
(n∈N*),證明:對于任意的n∈N* , Tn<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市隨機抽取一個月(30天)的空氣質量指數API監測數據,統計結果如下:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | (300,350] |
空氣質量 | 優 | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數 | 2 | 4 | 5 | 9 | 4 | 3 | 3 |
(Ⅰ)根據以上數據估計該城市這30天空氣質量指數API的平均值;
(Ⅱ)若該城市某企業因空氣污染每天造成的經濟損失S(單位:元)與空氣質量指數API(記為w)的關系式為:
S=
若在本月30天中隨機抽取一天,試估計該天經濟損失S大于200元且不超過600元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F分別為PC,BD的中點.
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年12月1日,漢孝城際鐵路正式通車運營.除始發站(漢口站)與終到站(孝感東站)外,目前沿途設有7個?空荆渲,武漢市轄區內有4站(后湖站、金銀潭站、天河機場站、天河街站),孝感市轄區內有3站(閔集站、毛陳站、槐蔭站).為了了解該線路運營狀況,交通管理部門計劃從這7個車站中任選3站調研.
(1)求孝感市轄區內至少選中1個車站的概率;
(2)若孝感市轄區內共選中了X個車站,求隨機變量X的分布列與期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中的“兩鼠穿墻題”是我國數學的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在路邊安裝路燈,路寬為OD,燈柱OB長為h米,燈桿AB長為1米,且燈桿與燈柱成120°角,路燈采用圓錐形燈罩,其軸截面的頂角為2θ,燈罩軸線AC與燈桿AB垂直.
(1)設燈罩軸線與路面的交點為C,若OC=5 米,求燈柱OB長;
(2)設h=10米,若燈罩軸截面的兩條母線所在直線一條恰好經過點O,另一條與地面的交點為E(如圖2);
(i)求cosθ的值;
(ii)求該路燈照在路面上的寬度OE的長;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com