【題目】設、
為拋物線
上的兩點,
與
的中點的縱坐標為4,直線
的斜率為
.
(1)求拋物線的方程;
(2)已知點,
、
為拋物線
(除原點外)上的不同兩點,直線
、
的斜率分別為
,
,且滿足
,記拋物線
在
、
處的切線交于點
,線段
的中點為
,若
,求
的值.
【答案】(1)(2)1
【解析】
(1)先)設,
,代入拋物線方程得到
,
,兩式作差,結合直線
的斜率以及
與
的中點的縱坐標,即可求出
,得到拋物線方程;
(2)先設,
,
,表示出
,
,再根據
,得到
的關系,設出直線
的方程,聯立直線與拋物線方程,表示出直線
的斜率,進而得到直線
的方程,同理得到直線
的方程,聯立兩直線方程求出
,再由
,即可求出結果.
解:(1)設,
.
又、
都在拋物線
上,
即所以,
.
由兩式相減得,
直線
的斜率為
,
.
兩邊同除以,且由已知得
,
所以,即
.
所以拋物線的方程為
.
(2)設,
,
.
因為
所以,所以
,
設直線的斜率為
,則直線
,
由消
得
.
由,得
,即
.
所以直線,
同理得直線.
聯立以上兩個方程解得
又,
所以,
所以.
科目:高中數學 來源: 題型:
【題目】先后擲一顆質地均勻的骰子(骰子的六個面上分別標有1,2,3,4,5,6)兩次,落在水平桌面上后,記正面朝上的點數分別為,記事件
為“
為偶數”,事件
為“
中有偶數且
”,則概率
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且拋物線
的焦點恰好是橢圓
的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作直線
與橢圓
交于
,
兩點,點
滿足
(
為坐標原點),求四邊形
面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某運動員每次射擊命中不低于8環的概率為,命中8環以下的概率為
,現用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環,一次命中8環以下的概率:先由計算器產生0到9之間取整數值的隨機數,指定0、1、2、3、4、5表示命中不低于8環,6、7、8、9表示命中8環以下,再以每三個隨機數為一組,代表三次射擊的結果,產生了如下20組隨機數:
據此估計,該運動員三次射擊中有兩次命中不低于8環,一次命中8環以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數
,若同時滿足下列條件:
①在
內單調遞增或單調遞減;
②存在區間,使
在
上的值域為
;那么把
(
)叫閉函數.
(1)求閉函數符合條件②的區間
;
(2)判斷函數是否為閉函數?并說明理由;
(3)判斷函數是否為閉函數?若是閉函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產品的收益與投資額的函數關系式;
(2)該家庭現有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=,
(1)求實數m的值
(2)作出的圖象,并指出當方程
只有一解,a的取值范圍(不必寫過程)
(3)若函數在區間
上單調遞增,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com