精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)=ex , g(x)=x+1.
(1)證明:f(x)≥g(x);
(2)求y=f(x),y=g(x)與x=﹣1所圍成的封閉圖形的面積.

【答案】
(1)證明:設h(x)=f(x)﹣g(x),則h′(x)=ex﹣1

∴h(x)在(﹣∞,0)上單調遞減,在(0,+∞)上單調遞增,

∴h(x)≥h(0)=0,

∴f(x)≥g(x)


(2)解:S= = =
【解析】(1)設h(x)=f(x)﹣g(x),則h′(x)=ex﹣1 h(x)在(﹣∞,0)上單調遞減,在(0,+∞)上單調遞增,即可證明結論;(2)利用S= ,即可得出結論.
【考點精析】認真審題,首先需要了解函數的最大(小)值與導數(求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax+ 的圖象經過點A(1,1),B(2,﹣1).
(1)求函數f(x)的解析式;
(2)判斷函數f(x)在(0,+∞)上的單調性并用定義證明;
(3)求f(x)在區間[ ,1]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)在定義域(0,+∞)上為增函數,且滿足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正四面體S﹣ABC中,若P為棱SC的中點,那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體ABCD﹣A′B′C′D′中, .設點F在線段CC'上,直線EF與平面A'BD所成的角為α,則sinα的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點F為拋物線E:y2=2px(p>0)的焦點,點A(3,m)在拋物線E上,且|AF|=4.

(1)求拋物線E的方程;
(2)已知點G(﹣1,0),延長AF交拋物線E于點B,證明:以點F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,f′(x)為函數f(x)的導函數.

(1)若F(x)=f(x)+b,函數F(x)在x=1處的切線方程為2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設bn=an+1﹣2an , 證明數列{bn}是等比數列(要指出首項、公比);
(2)若cn=nbn , 求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一批數量很大的產品,其次品率是10%.
(1)連續抽取兩件產品,求兩件產品均為正品的概率;
(2)對這批產品進行抽查,每次抽出一件,如果抽出次品,則抽查終止,否則繼續抽查,直到抽出次品,但抽查次數最多不超過4次,求抽查次數ξ的分布列及期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视