【題目】將 的圖象向左平移
個單位,則所得圖象的函數解析式為( )
A.y=sin2x
B.y=cos2x
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函數f(x)的解析式;
(2)若f(x)在區間(﹣∞,2]上是減函數,且對于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求實數m的取值范圍;
(3)若f(x)在區間[3,5]上有零點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的單調區間;
(2)若函數f(x)的定義域為R,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在[﹣2,2]上的奇函數,且f(2)=3,若對任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求實數a的取值范圍;
(2)若不等式f(x)≤(5﹣2a)t+1對任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面四邊形ABCD中,AB= ,AD=2
,CD=
,∠CBD=30°,∠BCD=120°.
(1)求BD的長;
(2)求∠ADC的度數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集為(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點處的切線與直線2x+y=0平行. (Ⅰ)求f(x)的解析式;
(Ⅱ)求函數g(x)=xf(x)+4x的單調遞增區間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com