【題目】已知函數 若函數g(x)=f(x)﹣k有3個零點,則實數k的取值范圍為( )
A.(0,+∞)
B.(0,1)
C.[1,+∞)
D.[1,2)
【答案】B
【解析】解:根據題意,函數g(x)=f(x)﹣k有3個零點,
即方程f(x)﹣k=0有3個根,則函數f(x)的圖象與直線y=k有3個交點,
而函數 的圖象草圖如圖:
若其圖象與直線y=k有3個交點,
必有0<k<1,
即實數k的取值范圍為(0,1);
所以答案是:B.
【考點精析】本題主要考查了函數的零點與方程根的關系的相關知識點,需要掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數關系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求實驗室這一天的最大溫差;
(Ⅱ)若要求實驗室溫度不高于11℃,則在哪段時間實驗室需要降溫?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題P:實數x滿足2x2﹣5ax﹣3a2<0,其中a>0,命題q:實數x滿足 .
(1)若a=2,且p∧q為真,求實數x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱A1A⊥底面ABC,AC=BC,D、E、F分別為棱AB,BC,A1C1的中點.
(1)證明:EF∥平面A1CD;
(2)證明:平面A1CD⊥平面ABB1A1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,且當x≤0時,f(x)=x2+2x.
(1)求函數f(x)(x∈R)的解析式;
(2)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補全完整函數f(x)的圖象;
(3)求使f(x)>0的實數x的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓C滿足:①圓心C在射線y=2x(x>0)上; ②與x軸相切;
③被直線y=x+2截得的線段長為
(1)求圓C的方程;
(2)過直線x+y+3=0上一點P作圓C的切線,設切點為E、F,求四邊形PECF面積的最小值,并求此時 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 ,動直線
(1)若動直線l與橢圓C相交,求實數m的取值范圍;
(2)當動直線l與橢圓C相交時,證明:這些直線被橢圓截得的線段的中點都在直線3x+2y=0上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com