精英家教網 > 高中數學 > 題目詳情
.以=1的焦點為頂點,頂點為焦點的橢圓方程為       (  )
A.    B.   C.      D.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)設方程表示曲線C.
(1)m=5時,求曲線C的離心率和準線方程;
(2)若曲線C表示橢圓,求橢圓焦點在y軸上的概率。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點當△AOB的面積為時(O為坐標原點),求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
設橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的標準方程;
(2)設直線與橢圓交于不同兩點,請問是否存在這樣的
直線過拋物線的焦點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)設圓,將曲線上每一點的縱坐標壓縮到原來的,對應的橫坐標不變,得到曲線C.經過點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),交曲線C于A、B兩個不同點.
(1)求曲線的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,有公共左頂點和公共左焦點的橢圓Ⅰ與Ⅱ的長半軸的長分別為,半焦距分別為,則下列結論不正確的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線和圓交于兩點,則的中點坐
標為(   )
                        

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

從極點作圓,則各弦中點的軌跡方程為__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,橢圓C:的右焦點為,直線的方程為,點A在直線上,線段AF交橢圓C于點B,若,則直線AF的傾斜角的大小為     

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视