精英家教網 > 高中數學 > 題目詳情

(1)設函數,.求函數的單調遞減區間;
(2)證明函數上是增函數.

(1)(2)
函數上是增函數

解析試題分析:(1)由原函數求其導數得,令----3分
減區間為     6分
(2) --12分
考點:函數單調性的判定
點評:求函數的單調增區間只需令導數大于零,求減區間只需令導數小于零,求解相應的不等式即可;證明單調性可通過證明導數大于零或小于零。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,b∈Z),曲線在點(2,)處的切線方程為=3.
(1)求的解析式;
(2)證明:曲線=上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求的單調區間;
(Ⅱ) 若存在實數,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

文科(本小題滿分14分)設函數。(Ⅰ)若函數處與直線相切,①求實數,b的值;②求函數上的最大值;(Ⅱ)當時,若不等式對所有的都成立,求實數m的取值范圍。)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求由曲線所圍成的封閉圖形的面積

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分8分)已知,函數.
(Ⅰ)求的極值(用含的式子表示);
(Ⅱ)若的圖象與軸有3個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在區間上最大值是5,最小值是-11,求的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數 
(1)當時,求證:;
(2)在區間恒成立,求實數的范圍。
(3)當時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
已知函數處取得極值,并且它的圖象與直線在點( 1 , 0 ) 處相切, 求a , b , c的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视