【題目】已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個最高點的坐標為(,
),由此點到相鄰最低點間的曲線與x軸交于點(
π,0),φ∈(﹣
,
).
(1)求這條曲線的函數解析式;
(2)寫出函數的單調區間.
【答案】(1)y=sin(
x+
);(2)[4kπ+
,4kπ+
],k∈Z.
【解析】解:(1)由題意可得A=,
=
﹣
,求得ω=
.
再根據最高點的坐標為(,
),可得
sin(
×
+φ)=
,即sin(
×
+φ)=1 ①.
再根據由此最高點到相鄰最低點間的曲線與x軸交于點(π,0),可得得
sin(
×
+φ)=0,即sin(
+φ)=0 ②,
由①②求得φ=,故曲線的解析式為y=
sin(
x+
).
(2)對于函數y=sin(
x+
),令2kπ﹣
≤
+
≤2kπ+
,求得4kπ﹣
≤x≤4kπ+
,
可得函數的增區間為[4kπ﹣,4kπ+
],k∈Z.
令2kπ+≤
+
≤2kπ+
,求得4kπ+
≤x≤4kπ+
,
可得函數的減區間為[4kπ+,4kπ+
],k∈Z.
科目:高中數學 來源: 題型:
【題目】有4個不同的球,4個不同的盒子,把球全部放入盒子內.
(1)共有幾種放法?
(2)恰有1個空盒,有幾種放法?
(3)恰有2個盒子不放球,有幾種放法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】截止到1999年底,我國人口約為13億,若今后能將人口平均增長率控制在1%,經過x年后,我國人口為y(單位:億).
(1)求y與x的函數關系式y=f(x);
(2)求函數y=f(x)的定義域;
(3)判斷函數f(x)是增函數還是減函數,并指出函數增減的實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張師傅想要一個如圖1所示的鋼筋支架的組合體,來到一家鋼制品加工店定制,拿出自己畫的組合體三視圖(如圖2所示).店老板看了三視圖,報了最低價,張師傅覺得很便宜,當即甩下定金和三視圖,約定第二天提貨.第二天提貨時,店老板一臉壞笑的捧出如圖3–1所示的組合體,張師傅一看,臉都綠了:“奸商,怎能如此偷工減料”.店老板說,我是按你的三視圖做的,要不我給你加一個正方體,但要加價,隨機加上了一個正方體,得到如圖3–2所示的組合體;張師傅臉還是綠的,店老板又加上一個正方體,組成了如圖 3–3 所示的組合體,又加價;張師傅臉繼續綠,店老板再加一個正方體,組成如圖 3–4 所示的組合體,再次加價;雙方就三視圖爭吵不休……
你認為店老板提供的個組合體的三視圖與張師傅畫的三視圖一致的個數是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業通過調查問卷(滿分50分)的形式對本企業900名員工的工作滿意度進行調查,并隨機抽取了其中30名員工(16名女員工,14名男員工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據以上數據,估計該企業得分大于45分的員工人數;
(2)現用計算器求得這30名員工的平均得分為40.5分,若規定大于平均得分為“滿意”,否則為“不滿意”,請完成下列表格:
“滿意”的人數 | “不滿意”的人數 | 總計 | |
女 | 16 | ||
男 | 14 | ||
總計 | 30 |
(3)根據上述表中數據,利用獨立性檢驗的方法判斷,能否有99%的把握認為該企業員工“性別”與“工作是否滿意”有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)在某一個周期內的圖象時,列表并填入的數據如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數f(x)的表達式;
(2)將函數f(x)的圖象向左平移π個單位,可得到函數g(x)的圖象,求函數y=f(x)·g(x)在區間的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王、小李兩位同學玩擲骰子(骰子質地均勻)游戲,規則:小王先擲一枚骰子,向上的點數記為x;小李后擲一枚骰子,向上的點數記為y,
(1)在直角坐標系xOy中,以(x,y)為坐標的點共有幾個?試求點(x,y)落在直線x+y=7上的概率;
(2)規定:若x+y≥10,則小王贏;若x+y≤4,則小李贏,其他情況不分輸贏.試問這個游戲規則公平嗎?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com