【題目】已知公差不為0的等差數列的前三項和為6,且
成等比數列.
(1)求數列的通項公式;
(2)設,數列
的前
項和為
,求使
的
的最大值.
【答案】(1).(2)13.
【解析】試題分析:(1)根據等差數列的前三項和為6,且
成等比數列列出關于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數列
的通項公式;(2)由(1)可得
,利用裂項相消法求和后,解不等式即可得結果.
試題解析:(1)設等差數列的首項為
,公差為
,依題意有
,
即,
由,解得
,所以
.
(2)由(1)可得,
所以.
解,得
,
所以的最大值為13.
【方法點晴】本題主要考查等差數列、等比數列的綜合運用以及裂項相消法求和,屬于中檔題.裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,掌握一些常見的裂項技巧:①;②
;③
;
④
;此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax(a>0且a≠1)的圖象經過點(2, ).
(1)比較f(2)與f(b2+2)的大;
(2)求函數g(x)=a (x≥0)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線上有一個動點
,過點
作直線
垂直于
軸,動點
在
上,且滿足
(
為坐標原點),記點
的軌跡為
.
(I)求曲線的方程;
(II)若直線是曲線
的一條切線,當點
到直線
的距離最短時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于x的不等式 >1+
(其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網絡外賣在市的普及情況,
市某調查機構借助網絡進行了關于網絡外賣的問卷調查,并從參與調查的網民中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用網絡外賣 | 偶爾或不用網絡外賣 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)根據表中數據,能否在犯錯誤的概率不超過的前提下認為
市使用網絡外賣的情況與性別有關?
(2)①現從所抽取的女網民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優惠券,求選出的3人中至少有2人經常使用網絡外賣的概率;
②將頻率視為概率,從市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用網絡外賣的人數為
,求
的數學期望和方差.
參考公式: ,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和Sn=an﹣1,則關于數列{an}的下列說法中,正確的個數有( )
①一定是等比數列,但不可能是等差數列
②一定是等差數列,但不可能是等比數列
③可能是等比數列,也可能是等差數列
④可能既不是等差數列,又不是等比數列
⑤可能既是等差數列,又是等比數列.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- ,
)?
D.(﹣∞,﹣ ,)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com