【題目】商品價格與商品需求量是經濟學中的一種基本關系,某服裝公司需對新上市的一款服裝制定合理的價格,需要了解服裝的單價x(單位:元)與月銷量y(單位:件)和月利潤z(單位:元)的影響,對試銷10個月的價格和月銷售量
(
)數據作了初步處理,得到如圖所示的散點圖及一些統計量的值.
x | y | |||||
61 | 0.018 | 372 | 2670 | 26 | 0.0004 |
表中.
(1)根據散點圖判斷,與
哪一個適宜作為需求量y關于價格x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立y關于x的回歸方程;
(3)已知這批服裝的成本為每件10元,根據(1)的結果回答下列問題;
(i)預測當服裝價格時,月銷售量的預報值是多少?
(span>ii)當服裝價格x為何值時,月利潤的預報值最大?(參考數據)
附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為.
【答案】(1);(2)
;(3)(i)502;(ii)當服裝價格
時,月利潤的預報值最大.
【解析】
(1)根據散點圖,結合函數圖像,即可容易判斷;
(2)根據參考數據,先建立y關w的線性回歸方程,再將其轉化為與
之間的函數即可;
(3)(。└鶕2)中所求回歸方程,即可代值求解;
(ⅱ)根據(2)中所求,結合利潤的計算,利用均值不等式即可求得.
(1)由散點圖可以判斷,作為需求量
關于價格
的回歸方程類型.
(2)令先建立
關
的線性回歸方程,
由于
,
所以關于
的線性回歸方程為
,
因此關于
的回歸方程為
.
(3)(ⅰ)由(2)可知當價格時,
月銷售價的預報值為
.
(ⅱ)由(2)可知月利潤的預報值為,
所以當,即
時,月利潤的預報值最大,
故當服裝價格時,月利潤的預報值最大.
科目:高中數學 來源: 題型:
【題目】已知四邊形為矩形,
,
為
的中點,將
沿
折起,得到四棱錐
,設
的中點為
,在翻折過程中,得到如下有三個命題:
①平面
,且
的長度為定值
;
②三棱錐的最大體積為
;
③在翻折過程中,存在某個位置,使得.
其中正確命題的序號為__________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,
,直線
、
相交于點
,且它們的斜率之積為
,記動點
的軌跡為曲線
。
(1)求曲線的方程;
(2)過點的直線與曲線
交于
、
兩點,是否存在定點
,使得直線
與
斜率之積為定值,若存在,求出
坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線l的參數方程為
(t為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程
.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,為直線l上一點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的方程為:
,動點
在橢圓上,
為原點,線段
的中點為
.
(1)以為極點,
軸的正半軸為極軸,建立極坐標系,求點
的軌跡的極坐標方程;
(2)設直線的參數方程為
(
為參數),
與點
的軌跡交于
、
兩點,求弦長
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓
相交于不同的兩點
,
.
(1)求圓的圓心坐標;
(2)求線段的中點
的軌跡
的方程;
(3)是否存在實數,使得直線
與曲線
只有一個交點?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐S﹣ABC中,SA=SB=SC,∠ABC=90°,AB>BC,E,F,G分別是AB,BC,CA的中點,記直線SE與SF所成的角為α,直線SG與平面SAB所成的角為β,平面SEG與平面SBC所成的銳二面角為γ,則( )
A.α>γ>βB.α>β>γC.γ>α>βD.γ>β>α
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com